論文の概要: Sampling-based Reactive Synthesis for Nondeterministic Hybrid Systems
- arxiv url: http://arxiv.org/abs/2304.06876v3
- Date: Sat, 23 Dec 2023 22:13:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-28 02:12:04.288110
- Title: Sampling-based Reactive Synthesis for Nondeterministic Hybrid Systems
- Title(参考訳): 非決定論的ハイブリッドシステムのためのサンプリングに基づく反応合成
- Authors: Qi Heng Ho, Zachary N. Sunberg, Morteza Lahijanian
- Abstract要約: 本稿では,非決定論的ハイブリッドシステムのためのサンプリング型戦略合成アルゴリズムを提案する。
我々は,ハイブリッドシステムの進化を,非決定主義が敵対的プレイヤーである2人プレイヤゲームとしてモデル化する。
目的は、敵プレイヤーのあらゆる可能な動きの下でゴールの満足度を保証する、勝利戦略 - 反応性(ロバスト)戦略を合成することである。
- 参考スコア(独自算出の注目度): 20.0212772540119
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper introduces a sampling-based strategy synthesis algorithm for
nondeterministic hybrid systems with complex continuous dynamics under temporal
and reachability constraints. We model the evolution of the hybrid system as a
two-player game, where the nondeterminism is an adversarial player whose
objective is to prevent achieving temporal and reachability goals. The aim is
to synthesize a winning strategy -- a reactive (robust) strategy that
guarantees the satisfaction of the goals under all possible moves of the
adversarial player. Our proposed approach involves growing a (search) game-tree
in the hybrid space by combining sampling-based motion planning with a novel
bandit-based technique to select and improve on partial strategies. We show
that the algorithm is probabilistically complete, i.e., the algorithm will
asymptotically almost surely find a winning strategy, if one exists. The case
studies and benchmark results show that our algorithm is general and effective,
and consistently outperforms state of the art algorithms.
- Abstract(参考訳): 本稿では,時間的および到達可能性制約下で複雑な連続ダイナミクスを持つ非決定的ハイブリッドシステムに対するサンプリングに基づく戦略合成アルゴリズムを提案する。
我々は,ハイブリッドシステムの進化を2人プレイヤゲームとしてモデル化し,非決定性は時間的および到達可能性の目標達成を阻止することを目的とした敵プレイヤーである。
目的は、敵プレイヤーのあらゆる可能な動きの下でゴールの満足度を保証する、勝利戦略 - 反応性(ロバスト)戦略を合成することである。
提案手法は,サンプリングに基づくモーションプランニングと,部分的戦略の選択と改善のための新しいバンディットベース手法を組み合わせることで,ハイブリッド空間における(検索)ゲームツリーを育成するものである。
アルゴリズムが確率的に完全であることを示す。つまり、もし存在するならば、アルゴリズムは漸近的に勝利戦略を見つける。
ケーススタディとベンチマークの結果から,本アルゴリズムは汎用的かつ効果的であり,artアルゴリズムの状態を一貫して上回っていることが示された。
関連論文リスト
- Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
我々は,協調型MEC支援RANスライシングシステムにおける異種サービス要求に対するSSRの最大化を目指す。
最適ハイブリッドRAポリシーをインテリジェントに学習するためのRGRLアルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-05-02T01:36:13Z) - Towards Optimal Randomized Strategies in Adversarial Example Game [13.287949447721115]
敵対的なサンプル攻撃に対するディープニューラルネットワークモデルの脆弱性は、多くの人工知能アプリケーションにおいて実践的な課題である。
確率分布空間上の新しい無限次元連続時間フローを用いて問題をモデル化するFRATと呼ばれるアルゴリズムを提案する。
我々は、FRATの連続時間制限がディフェンダーとアタッカーによって形成されたゼロサムゲームにおいて混合ナッシュ平衡に収束することを証明する。
論文 参考訳(メタデータ) (2023-06-29T07:29:23Z) - Safe Multi-agent Learning via Trapping Regions [89.24858306636816]
我々は、動的システムの定性理論から知られているトラップ領域の概念を適用し、分散学習のための共同戦略空間に安全セットを作成する。
本稿では,既知の学習力学を持つシステムにおいて,候補がトラップ領域を形成することを検証するための二分分割アルゴリズムと,学習力学が未知のシナリオに対するサンプリングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2023-02-27T14:47:52Z) - Finding mixed-strategy equilibria of continuous-action games without
gradients using randomized policy networks [83.28949556413717]
グラデーションへのアクセスを伴わない連続アクションゲームのナッシュ平衡を近似的に計算する問題について検討する。
ニューラルネットワークを用いてプレイヤーの戦略をモデル化する。
本論文は、制約のない混合戦略と勾配情報のない一般的な連続アクションゲームを解決する最初の方法である。
論文 参考訳(メタデータ) (2022-11-29T05:16:41Z) - Opportunistic Qualitative Planning in Stochastic Systems with Incomplete
Preferences over Reachability Objectives [24.11353445650682]
優先順位は、すべての制約が同時に満たされない場合に、どの目標/制約を満たすかを決定する上で重要な役割を果たします。
本稿では,SPIおよびSASI戦略を合成し,複数の逐次改善を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-10-04T19:53:08Z) - Mixed Strategies for Security Games with General Defending Requirements [37.02840909260615]
Stackelbergのセキュリティゲームはディフェンダーとアタッカーの間で行われ、ディフェンダーは複数のターゲットに限られたリソースを割り当てる必要がある。
そこで本研究では,ごく少数の戦略のみを用いる混合戦略を計算し,効率的な近似パチングアルゴリズムを提案する。
論文 参考訳(メタデータ) (2022-04-26T08:56:39Z) - Distributed Evolution Strategies for Black-box Stochastic Optimization [42.90600124972943]
この研究は、分散ブラックボックス最適化への進化的アプローチに関するものである。
各作業者は、アルゴリズムによる問題の近似を個別に解くことができる。
問題のロバスト性を大幅に改善する2つの代替シミュレーション手法を提案する。
論文 参考訳(メタデータ) (2022-04-09T11:18:41Z) - VNE Strategy based on Chaotic Hybrid Flower Pollination Algorithm
Considering Multi-criteria Decision Making [12.361459296815559]
仮想ネットワーク埋め込み (Virtual Network Embedding, VNE) 問題に対するハイブリッド花の受粉アルゴリズムの設計戦略について論じる。
クロス操作は、グローバル検索を完了させるためにクロスポリン化操作を置き換えるために使用される。
従来のフィットネスベースの選択戦略の補完としてライフサイクルメカニズムが導入されている。
論文 参考訳(メタデータ) (2022-02-07T00:57:00Z) - Byzantine-Resilient Non-Convex Stochastic Gradient Descent [61.6382287971982]
敵対的レジリエントな分散最適化。
機械は独立して勾配を計算し 協力することができます
私達のアルゴリズムは新しい集中の技術およびサンプル複雑性に基づいています。
それは非常に実用的です:それはないときすべての前の方法の性能を改善します。
セッティングマシンがあります。
論文 参考訳(メタデータ) (2020-12-28T17:19:32Z) - A black-box adversarial attack for poisoning clustering [78.19784577498031]
本稿では,クラスタリングアルゴリズムのロバスト性をテストするために,ブラックボックス対逆攻撃法を提案する。
我々の攻撃は、SVM、ランダムフォレスト、ニューラルネットワークなどの教師付きアルゴリズムに対しても転送可能であることを示す。
論文 参考訳(メタデータ) (2020-09-09T18:19:31Z) - Mixed Strategies for Robust Optimization of Unknown Objectives [93.8672371143881]
そこでは,不確実なパラメータの最悪の実現に対して,未知の目的関数を最適化することを目的として,ロバストな最適化問題を考察する。
我々は,未知の目的をノイズ点評価から逐次学習する,新しいサンプル効率アルゴリズムGP-MROを設計する。
GP-MROは、最悪のケースで期待される目標値を最大化する、堅牢でランダムな混合戦略の発見を目指している。
論文 参考訳(メタデータ) (2020-02-28T09:28:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。