論文の概要: Experts' cognition-driven safe noisy labels learning for precise segmentation of residual tumor in breast cancer
- arxiv url: http://arxiv.org/abs/2304.07295v2
- Date: Sat, 18 Jan 2025 17:11:43 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-01-22 14:15:05.479693
- Title: Experts' cognition-driven safe noisy labels learning for precise segmentation of residual tumor in breast cancer
- Title(参考訳): 乳がんの残存腫瘍の正確な分画を学習する専門家の認知誘導型安全なノイズラベル
- Authors: Yongquan Yang, Jie Chen, Yani Wei, Mohammad Alobaidi, Hong Bu,
- Abstract要約: 専門家の認知駆動型セーフノイズラベル学習(ECDSNLL)アプローチを提案する。
ECDSNLLは、乳がんの残存腫瘍の同定に関する病理専門家の認識と、データモデリングに関する人工知能専門家の認識を統合することで構築される。
実験の結果,ECDSNLL は通常の SL と比較すると,多くの UNet 変種よりも低い境界を著しく改善できることがわかった。
- 参考スコア(独自算出の注目度): 4.035714930284424
- License:
- Abstract: Precise segmentation of residual tumor in breast cancer (PSRTBC) after neoadjuvant chemotherapy is a fundamental key technique in the treatment process of breast cancer. However, achieving PSRTBC is still a challenge, since the breast cancer tissue and tumor cells commonly have complex and varied morphological changes after neoadjuvant chemotherapy, which inevitably increases the difficulty to produce a predictive model that has good generalization with usual supervised learning (SL). To alleviate this situation, in this paper, we propose an experts' cognition-driven safe noisy labels learning (ECDSNLL) approach. In the concept of safe noisy labels learning, which is a typical type of safe weakly supervised learning, ECDSNLL is constructed by integrating the pathology experts' cognition about identifying residual tumor in breast cancer and the artificial intelligence experts' cognition about data modeling with provided data basis. Experimental results show that, compared with usual SL, ECDSNLL can significantly improve the lower bound of a number of UNet variants with 2.42% and 4.1% respectively in recall and fIoU for PSRTBC, while being able to achieve improvements in mean value and upper bound as well.
- Abstract(参考訳): 新アジュバント化学療法後の乳癌遺残腫瘍(PSRTBC)の精密分節化は乳癌治療の根本的手法である。
しかし、PSRTBCの達成は、乳がん組織と腫瘍細胞がネオアジュバント化学療法後の複雑な形態変化を持ち、通常の教師付き学習(SL)と良好な一般化の予測モデルを作成するのが必然的に困難になるため、依然として課題である。
この状況を緩和するために,本稿では,専門家の認知駆動型安全なノイズラベル学習(ECDSNLL)アプローチを提案する。
安全なノイズラベル学習という概念は、乳がんの残存腫瘍の同定に関する病理専門家の認識と、提供されたデータに基づくデータモデリングに関する人工知能専門家の認識を統合することで、安全な教師付き学習の典型的なタイプである。
実験結果によると、通常のSLと比較して、ECDSNLLは、平均値と上界の改善を達成しつつ、リコールにおいてそれぞれ2.42%と4.1%のUNet変種とPSRTBCのfIoUの下位境界を大幅に改善できることがわかった。
関連論文リスト
- A Holistic Weakly Supervised Approach for Liver Tumor Segmentation with Clinical Knowledge-Informed Label Smoothing [17.798774864007505]
肝がんは世界中で死亡率の高い原因である。
ディープラーニングは、自動肝セグメンテーションを約束している。
これらの課題に対処する新しい全体的弱教師付きフレームワークを提案する。
論文 参考訳(メタデータ) (2024-10-13T20:52:25Z) - Using Multiparametric MRI with Optimized Synthetic Correlated Diffusion Imaging to Enhance Breast Cancer Pathologic Complete Response Prediction [71.91773485443125]
ネオアジュバント化学療法は乳癌の治療戦略として最近人気を集めている。
ネオアジュバント化学療法を推奨する現在のプロセスは、医療専門家の主観的評価に依存している。
本研究は, 乳癌の病理組織学的完全反応予測に最適化されたCDI$s$を応用することを検討した。
論文 参考訳(メタデータ) (2024-05-13T15:40:56Z) - BreastRegNet: A Deep Learning Framework for Registration of Breast
Faxitron and Histopathology Images [0.05454343470301196]
本研究では,モノモーダル合成画像対に基づいて学習した深層学習に基づく画像登録手法を提案する。
モデルは、ネオアジュバント化学療法を受け、手術を受けた50人の女性のデータを用いて訓練された。
論文 参考訳(メタデータ) (2024-01-18T08:23:29Z) - Cancer-Net BCa-S: Breast Cancer Grade Prediction using Volumetric Deep
Radiomic Features from Synthetic Correlated Diffusion Imaging [82.74877848011798]
乳がんの流行は成長を続けており、2023年には米国で約30万人の女性に影響を及ぼした。
金標準のScarff-Bloom-Richardson(SBR)グレードは、化学療法に対する患者の反応を一貫して示すことが示されている。
本稿では,合成相関拡散(CDI$s$)画像を用いた乳がん鑑定における深層学習の有効性について検討する。
論文 参考訳(メタデータ) (2023-04-12T15:08:34Z) - Enhancing Clinical Support for Breast Cancer with Deep Learning Models
using Synthetic Correlated Diffusion Imaging [66.63200823918429]
深層学習モデルを用いた乳癌に対する臨床支援の強化について検討した。
我々は、体積畳み込みニューラルネットワークを利用して、前処理コホートから深い放射能特徴を学習する。
提案手法は, グレードと処理後応答予測の両方において, より良い性能を実現することができる。
論文 参考訳(メタデータ) (2022-11-10T03:02:12Z) - Exploiting segmentation labels and representation learning to forecast
therapy response of PDAC patients [60.78505216352878]
化学療法に対する腫瘍反応を予測するためのハイブリッドディープニューラルネットワークパイプラインを提案する。
セグメンテーションから分類への表現伝達の組み合わせと、ローカライゼーションと表現学習を利用する。
提案手法は, 合計477個のデータセットを用いて, ROC-AUC 63.7% の処理応答を予測できる, 極めて効率的な手法である。
論文 参考訳(メタデータ) (2022-11-08T11:50:31Z) - Improved Pancreatic Tumor Detection by Utilizing Clinically-Relevant
Secondary Features [6.132193527180974]
膵臓がんは、がん関連死亡の世界的な原因の1つである。
本稿では,周囲の解剖学的構造の臨床的特徴を利用した膵腫瘍の検出法を提案する。
論文 参考訳(メタデータ) (2022-08-06T20:38:25Z) - Open-Set Recognition of Breast Cancer Treatments [91.3247063132127]
オープンセット認識は、テストサンプルをトレーニングや"未知"から既知のクラスの1つに分類することで、分類タスクを一般化する
乳がん患者データに対して,画像データセットの最先端結果を実現するガウス混合変分オートエンコーダモデルを適用した。
より正確でロバストな分類結果が得られ,F1の平均値が24.5%上昇したばかりでなく,臨床環境への展開性の観点からも,オープンセット認識の再検討を行った。
論文 参考訳(メタデータ) (2022-01-09T04:35:55Z) - Stan: Small tumor-aware network for breast ultrasound image segmentation [68.8204255655161]
本研究では,小腫瘍認識ネットワーク(Small tumor-Aware Network,STAN)と呼ばれる新しいディープラーニングアーキテクチャを提案する。
提案手法は, 乳腺腫瘍の分節化における最先端のアプローチよりも優れていた。
論文 参考訳(メタデータ) (2020-02-03T22:25:01Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。