論文の概要: MA-ViT: Modality-Agnostic Vision Transformers for Face Anti-Spoofing
- arxiv url: http://arxiv.org/abs/2304.07549v1
- Date: Sat, 15 Apr 2023 13:03:44 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 18:24:13.051988
- Title: MA-ViT: Modality-Agnostic Vision Transformers for Face Anti-Spoofing
- Title(参考訳): ma-vit: 顔アンチスプーフィングのためのモダリティ非依存視覚トランスフォーマー
- Authors: Ajian Liu and Yanyan Liang
- Abstract要約: マルチモーダルデータの助けを借りて任意のモーダルアタックの性能を向上させることを目的としたモダリティ非依存型視覚変換器(MA-ViT)を提案する。
具体的には、MA-ViTは早期融合を採用し、利用可能なすべてのトレーニングモダリティデータを集約し、任意のモダリティサンプルの柔軟なテストを可能にする。
実験により、MA-ViTでトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークよりも大きなマージンで優れていることが示された。
- 参考スコア(独自算出の注目度): 3.3031006227198003
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The existing multi-modal face anti-spoofing (FAS) frameworks are designed
based on two strategies: halfway and late fusion. However, the former requires
test modalities consistent with the training input, which seriously limits its
deployment scenarios. And the latter is built on multiple branches to process
different modalities independently, which limits their use in applications with
low memory or fast execution requirements. In this work, we present a single
branch based Transformer framework, namely Modality-Agnostic Vision Transformer
(MA-ViT), which aims to improve the performance of arbitrary modal attacks with
the help of multi-modal data. Specifically, MA-ViT adopts the early fusion to
aggregate all the available training modalities data and enables flexible
testing of any given modal samples. Further, we develop the Modality-Agnostic
Transformer Block (MATB) in MA-ViT, which consists of two stacked attentions
named Modal-Disentangle Attention (MDA) and Cross-Modal Attention (CMA), to
eliminate modality-related information for each modal sequences and supplement
modality-agnostic liveness features from another modal sequences, respectively.
Experiments demonstrate that the single model trained based on MA-ViT can not
only flexibly evaluate different modal samples, but also outperforms existing
single-modal frameworks by a large margin, and approaches the multi-modal
frameworks introduced with smaller FLOPs and model parameters.
- Abstract(参考訳): 既存のマルチモーダルフェイスアンチスプーフィング(FAS)フレームワークは、中間と後期の2つの戦略に基づいて設計されている。
しかしながら、前者はトレーニングインプットと整合したテストモダリティを必要とし、デプロイメントシナリオを著しく制限する。
そして後者は、異なるモダリティを独立して処理するために、複数のブランチ上に構築されている。
本研究では,マルチモーダルデータを用いた任意のモーダルアタックの性能向上を目的とした,単一ブランチベースのトランスフォーマフレームワークであるModality-Agnostic Vision Transformer(MA-ViT)を提案する。
具体的には、MA-ViTは早期融合を採用し、利用可能なすべてのトレーニングモダリティデータを集約し、任意のモダリティサンプルの柔軟なテストを可能にする。
さらに、mda(modal-disentangle attention)とcma(cross-modal attention)と呼ばれる2つの重ねられた注意からなるma-vitのmodality-agnostic transformer block(matb)を開発し、各モーダルシーケンスのmodality-related informationを排除し、他のモーダルシーケンスからmodality-agnostic liveness featureを補完する。
ma-vitに基づいてトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークを大きなマージンで上回り、より小さなフロップとモデルパラメータで導入されたマルチモーダルフレームワークにアプローチできる。
関連論文リスト
- LLMs Can Evolve Continually on Modality for X-Modal Reasoning [62.2874638875554]
既存の手法は、モーダル固有の事前訓練とジョイント・モーダルチューニングに大きく依存しており、新しいモーダルへと拡張する際の計算上の負担が大きくなった。
PathWeaveは、Modal-Path sWitchingとExpAnsion機能を備えた柔軟でスケーラブルなフレームワークである。
PathWeaveは最先端のMLLMと互換性があり、パラメータトレーニングの負担を98.73%削減する。
論文 参考訳(メタデータ) (2024-10-26T13:19:57Z) - Adapting Segment Anything Model to Multi-modal Salient Object Detection with Semantic Feature Fusion Guidance [15.435695491233982]
マルチモーダル・サリアン・オブジェクト検出(SOD)のためのSegment Anything Model(SAM)の強力な特徴表現とゼロショット一般化能力を探求し活用するための新しいフレームワークを提案する。
アンダーラインSAMとサブラインマンティックファウンダリナールファウンダリナールグダンクンダリナール(サマン)を併用して開発する。
画像エンコーダでは,マルチモーダルSAMをマルチモーダル情報に適用するためのマルチモーダルアダプタが提案されている。
論文 参考訳(メタデータ) (2024-08-27T13:47:31Z) - Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities [8.517830626176641]
Any2Segは、任意の視覚的条件におけるモダリティの組み合わせから堅牢なセグメンテーションを実現する新しいフレームワークである。
4つのモダリティを持つ2つのベンチマークの実験は、Any2Segがマルチモーダル設定の下で最先端を達成することを示した。
論文 参考訳(メタデータ) (2024-07-16T03:34:38Z) - All in One Framework for Multimodal Re-identification in the Wild [58.380708329455466]
オールインワン(AIO)という,ReID導入のためのマルチモーダル学習パラダイム
AIOは、凍結したトレーニング済みのビッグデータをエンコーダとして利用し、追加の微調整なしに効果的なマルチモーダル検索を可能にする。
クロスモーダルおよびマルチモーダルReIDの実験により、AIOは様々なモーダルデータを扱うだけでなく、困難な状況でも優れていることが明らかになった。
論文 参考訳(メタデータ) (2024-05-08T01:04:36Z) - CREMA: Generalizable and Efficient Video-Language Reasoning via Multimodal Modular Fusion [58.15403987979496]
CREMAは、ビデオ推論のための一般化可能、高効率、モジュラリティ融合フレームワークである。
本稿では,軽量核融合モジュールとモーダリティ・シークエンシャル・トレーニング・ストラテジーによって支援された,新しいプログレッシブ・マルチモーダル・フュージョン設計を提案する。
ビデオQA や Video-Audio/3D/Touch/Thermal QA を含む7つのビデオ言語推論タスクについて検証を行った。
論文 参考訳(メタデータ) (2024-02-08T18:27:22Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Visual Prompt Flexible-Modal Face Anti-Spoofing [23.58674017653937]
実世界から収集されたマルチモーダル顔データは 様々な画像センサーの モダリティが欠如しているため しばしば不完全です
本稿では, 凍結前基礎モデルを下流のフレキシブル・モダルFASタスクに適応させるために, モーダル関連プロンプトを学習するフレキシブル・モダルFASを提案する。
2つのマルチモーダルFASベンチマークデータセットで実施された実験は、我々のVP-FASフレームワークの有効性を実証する。
論文 参考訳(メタデータ) (2023-07-26T05:06:41Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
本稿では,顔のアンチ・スプーフィングのためのフレキシブル・モーダル・ビジョン・トランス (FM-ViT) と呼ばれる,純粋なトランスフォーマーベースのフレームワークを提案する。
FM-ViTは、利用可能なマルチモーダルデータの助けを借りて、任意の単一モーダル(すなわちRGB)攻撃シナリオを柔軟にターゲットすることができる。
実験により、FM-ViTに基づいてトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークよりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-05-05T04:28:48Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。