論文の概要: Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities
- arxiv url: http://arxiv.org/abs/2407.11351v1
- Date: Tue, 16 Jul 2024 03:34:38 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-17 18:42:16.739675
- Title: Learning Modality-agnostic Representation for Semantic Segmentation from Any Modalities
- Title(参考訳): モダリティからのセマンティックセグメンテーションのためのモダリティ非依存表現の学習
- Authors: Xu Zheng, Yuanhuiyi Lyu, Lin Wang,
- Abstract要約: Any2Segは、任意の視覚的条件におけるモダリティの組み合わせから堅牢なセグメンテーションを実現する新しいフレームワークである。
4つのモダリティを持つ2つのベンチマークの実験は、Any2Segがマルチモーダル設定の下で最先端を達成することを示した。
- 参考スコア(独自算出の注目度): 8.517830626176641
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Image modality is not perfect as it often fails in certain conditions, e.g., night and fast motion. This significantly limits the robustness and versatility of existing multi-modal (i.e., Image+X) semantic segmentation methods when confronting modality absence or failure, as often occurred in real-world applications. Inspired by the open-world learning capability of multi-modal vision-language models (MVLMs), we explore a new direction in learning the modality-agnostic representation via knowledge distillation (KD) from MVLMs. Intuitively, we propose Any2Seg, a novel framework that can achieve robust segmentation from any combination of modalities in any visual conditions. Specifically, we first introduce a novel language-guided semantic correlation distillation (LSCD) module to transfer both inter-modal and intra-modal semantic knowledge in the embedding space from MVLMs, e.g., LanguageBind. This enables us to minimize the modality gap and alleviate semantic ambiguity to combine any modalities in any visual conditions. Then, we introduce a modality-agnostic feature fusion (MFF) module that reweights the multi-modal features based on the inter-modal correlation and selects the fine-grained feature. This way, our Any2Seg finally yields an optimal modality-agnostic representation. Extensive experiments on two benchmarks with four modalities demonstrate that Any2Seg achieves the state-of-the-art under the multi-modal setting (+3.54 mIoU) and excels in the challenging modality-incomplete setting(+19.79 mIoU).
- Abstract(参考訳): 画像のモダリティは、特定の条件、例えば夜や速い動きでしばしば失敗するため、完璧ではない。
これは既存のマルチモーダル(つまり Image+X)セマンティックセグメンテーションメソッドが、実世界のアプリケーションでしばしば発生するように、モダリティの欠如や失敗に直面するときの堅牢性と汎用性を著しく制限する。
マルチモーダル視覚言語モデル(MVLM)のオープンワールド学習能力に触発されて,MVLMから知識蒸留(KD)を通してモダリティ非依存表現を学習する新たな方向性を探求する。
直感的には、任意の視覚条件におけるモダリティの組み合わせからロバストなセグメンテーションを実現する新しいフレームワークであるAny2Segを提案する。
具体的には,新しい言語誘導型意味的相関蒸留(LSCD)モジュールを導入し,MVLM,eg,LanguageBindから組込み空間におけるモーダル間およびモーダル間意味的知識の両方を伝達する。
これにより、モダリティギャップを最小化し、意味的あいまいさを緩和し、どんな視覚条件でもモダリティを組み合わせることができる。
次に、モーダル間相関に基づいてマルチモーダル特徴を再重み付けし、細粒度特徴を選択するモーダル非依存的特徴融合(MFF)モジュールを提案する。
このように、Any2Segは最終的に最適なモダリティに依存しない表現をもたらす。
4つのモダリティを持つ2つのベンチマークの大規模な実験は、Any2Segがマルチモーダル設定(+3.54 mIoU)の下で最先端を達成し、挑戦的なモダリティ不完全設定(+19.79 mIoU)で優れていることを示した。
関連論文リスト
- SM3Det: A Unified Model for Multi-Modal Remote Sensing Object Detection [73.49799596304418]
本稿では,リモートセンシングのためのマルチモーダルデータセットとマルチタスクオブジェクト検出(M2Det)という新しいタスクを提案する。
水平方向または指向方向の物体を、あらゆるセンサーから正確に検出するように設計されている。
この課題は、1)マルチモーダルモデリングの管理に関わるトレードオフ、2)マルチタスク最適化の複雑さに起因する。
論文 参考訳(メタデータ) (2024-12-30T02:47:51Z) - MAGIC++: Efficient and Resilient Modality-Agnostic Semantic Segmentation via Hierarchical Modality Selection [20.584588303521496]
本稿では,効率的なマルチモーダル融合と階層的モダリティ選択のための2つの重要なプラグアンドプレイモジュールからなるMAGIC++フレームワークを紹介する。
本手法は実世界のベンチマークと合成ベンチマークの両方で最先端の性能を実現する。
本手法は, 先行技術よりも大きなマージンで優れる新奇なモダリティ非依存環境において, 優れた手法である。
論文 参考訳(メタデータ) (2024-12-22T06:12:03Z) - Semantic-Guided Multimodal Sentiment Decoding with Adversarial Temporal-Invariant Learning [22.54577327204281]
マルチモーダル感情分析は、異なるモダリティから表現を学習し、人間の感情を識別することを目的としている。
既存の作品は、連続した時系列に固有のフレームレベルの冗長性を無視することが多く、ノイズを伴う不完全なモジュラリティ表現をもたらす。
本研究では,時間段階の分布変動を制約し,時間的時間的変動を効果的に捉えた時間的不変学習を提案する。
論文 参考訳(メタデータ) (2024-08-30T03:28:40Z) - Centering the Value of Every Modality: Towards Efficient and Resilient Modality-agnostic Semantic Segmentation [7.797154022794006]
最近の試みでは、RGBのモダリティを中心とみなし、その他を補助的とみなし、2つの枝を持つ非対称なアーキテクチャを生み出している。
本稿では,コンパクトモデルから高性能モデルまで,様々なバックボーンと柔軟にペアリングできるMAGICという新しい手法を提案する。
提案手法は, モデルパラメータを60%削減しつつ, 最先端性能を実現する。
論文 参考訳(メタデータ) (2024-07-16T03:19:59Z) - U3M: Unbiased Multiscale Modal Fusion Model for Multimodal Semantic Segmentation [63.31007867379312]
U3M: An Unbiased Multiscale Modal Fusion Model for Multimodal Semanticsを紹介する。
我々は,グローバルな特徴とローカルな特徴の効果的な抽出と統合を保証するために,複数のスケールで機能融合を採用している。
実験により,本手法は複数のデータセットにまたがって優れた性能を発揮することが示された。
論文 参考訳(メタデータ) (2024-05-24T08:58:48Z) - Unified Multi-modal Unsupervised Representation Learning for
Skeleton-based Action Understanding [62.70450216120704]
教師なしの事前訓練は骨格に基づく行動理解において大きな成功を収めた。
我々はUmURLと呼ばれる統一マルチモーダル非教師なし表現学習フレームワークを提案する。
UmURLは効率的な早期融合戦略を利用して、マルチモーダル機能を単一ストリームで共同でエンコードする。
論文 参考訳(メタデータ) (2023-11-06T13:56:57Z) - Exploiting Modality-Specific Features For Multi-Modal Manipulation
Detection And Grounding [54.49214267905562]
マルチモーダルな操作検出とグラウンド処理のためのトランスフォーマーベースのフレームワークを構築する。
本フレームワークは,マルチモーダルアライメントの能力を維持しながら,モダリティ特有の特徴を同時に探求する。
本稿では,グローバルな文脈的キューを各モーダル内に適応的に集約する暗黙的操作クエリ(IMQ)を提案する。
論文 参考訳(メタデータ) (2023-09-22T06:55:41Z) - FM-ViT: Flexible Modal Vision Transformers for Face Anti-Spoofing [88.6654909354382]
本稿では,顔のアンチ・スプーフィングのためのフレキシブル・モーダル・ビジョン・トランス (FM-ViT) と呼ばれる,純粋なトランスフォーマーベースのフレームワークを提案する。
FM-ViTは、利用可能なマルチモーダルデータの助けを借りて、任意の単一モーダル(すなわちRGB)攻撃シナリオを柔軟にターゲットすることができる。
実験により、FM-ViTに基づいてトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークよりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-05-05T04:28:48Z) - MA-ViT: Modality-Agnostic Vision Transformers for Face Anti-Spoofing [3.3031006227198003]
マルチモーダルデータの助けを借りて任意のモーダルアタックの性能を向上させることを目的としたモダリティ非依存型視覚変換器(MA-ViT)を提案する。
具体的には、MA-ViTは早期融合を採用し、利用可能なすべてのトレーニングモダリティデータを集約し、任意のモダリティサンプルの柔軟なテストを可能にする。
実験により、MA-ViTでトレーニングされた単一モデルは、異なるモーダルサンプルを柔軟に評価できるだけでなく、既存のシングルモーダルフレームワークよりも大きなマージンで優れていることが示された。
論文 参考訳(メタデータ) (2023-04-15T13:03:44Z) - Exploiting modality-invariant feature for robust multimodal emotion
recognition with missing modalities [76.08541852988536]
我々は、欠落したモダリティ・イマジネーション・ネットワーク(IF-MMIN)に不変な特徴を用いることを提案する。
提案モデルは,不確実なモダリティ条件下で,すべてのベースラインを上回り,全体の感情認識性能を不変に向上することを示す。
論文 参考訳(メタデータ) (2022-10-27T12:16:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。