論文の概要: Metrics for Bayesian Optimal Experiment Design under Model
Misspecification
- arxiv url: http://arxiv.org/abs/2304.07949v1
- Date: Mon, 17 Apr 2023 02:13:20 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 16:32:19.311203
- Title: Metrics for Bayesian Optimal Experiment Design under Model
Misspecification
- Title(参考訳): モデルミス種別に基づくベイズ最適実験設計のための計量
- Authors: Tommie A. Catanach and Niladri Das
- Abstract要約: ユーティリティ関数は、共通ユーティリティ関数が情報ゲインである実験の目的を定義する。
この記事では、従来の期待情報獲得基準を超えて、このプロセスのための拡張されたフレームワークを紹介します。
フレームワークの機能は、線形化スプリングマッサーダンパーシステムとF-16モデルを含むシナリオに適用することで紹介される。
- 参考スコア(独自算出の注目度): 3.04585143845864
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The conventional approach to Bayesian decision-theoretic experiment design
involves searching over possible experiments to select a design that maximizes
the expected value of a specified utility function. The expectation is over the
joint distribution of all unknown variables implied by the statistical model
that will be used to analyze the collected data. The utility function defines
the objective of the experiment where a common utility function is the
information gain. This article introduces an expanded framework for this
process, where we go beyond the traditional Expected Information Gain criteria
and introduce the Expected General Information Gain which measures robustness
to the model discrepancy and Expected Discriminatory Information as a criterion
to quantify how well an experiment can detect model discrepancy. The
functionality of the framework is showcased through its application to a
scenario involving a linearized spring mass damper system and an F-16 model
where the model discrepancy is taken into account while doing Bayesian optimal
experiment design.
- Abstract(参考訳): ベイズ決定理論実験設計への従来のアプローチは、特定のユーティリティ関数の期待値を最大化する設計を選択するために可能な実験を探索することを含む。
この期待は、収集されたデータを分析するために使用される統計モデルによって暗示されるすべての未知変数のジョイント分布を上回っている。
ユーティリティ関数は、共通のユーティリティ関数が情報ゲインである実験の目的を定義する。
本稿では、従来の予測情報ゲイン基準を超えて、モデル不一致に対する堅牢性を測定する期待情報ゲインと、実験がモデル不一致をどの程度検出できるかを定量化するための基準として期待識別情報を導入する。
このフレームワークの機能は、線形ばね質量ダンパシステムと、ベイズ最適実験設計をしながらモデルの不一致を考慮に入れるf-16モデルを含むシナリオに応用して紹介されている。
関連論文リスト
- Influence Functions for Scalable Data Attribution in Diffusion Models [52.92223039302037]
拡散モデルは、生成的モデリングに大きな進歩をもたらした。
しかし、彼らの普及はデータ属性と解釈可能性に関する課題を引き起こす。
本稿では,テキスト・インフルエンス・ファンクション・フレームワークを開発することにより,このような課題に対処することを目的とする。
論文 参考訳(メタデータ) (2024-10-17T17:59:02Z) - A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal Experimental Design [0.0]
本稿では,非線形観測および予測モデルを用いたGO-OEDの計算方法であるLF-GO-OED(likelihood-free goal-oriented optimal experiment design)を紹介する。
暗黙のモデルに適応するように特別に設計されている。
本手法は既存の方法によるベンチマーク問題で検証され,疫学および神経科学の科学的応用で実証された。
論文 参考訳(メタデータ) (2024-08-18T19:45:49Z) - Bayesian Model Selection via Mean-Field Variational Approximation [10.433170683584994]
平均場(MF)推論の非漸近特性をベイズ的枠組みの下で検討する。
BvM(Bernstein von-Mises)定理は、MF からの変分分布をモデル的不特定性(英語版)の下で表す。
論文 参考訳(メタデータ) (2023-12-17T04:48:25Z) - On the Properties and Estimation of Pointwise Mutual Information Profiles [49.877314063833296]
ポイントワイド相互情報プロファイル(ポイントワイド相互情報プロファイル、英: pointwise mutual information profile)は、与えられた確率変数のペアに対するポイントワイド相互情報の分布である。
そこで我々は,モンテカルロ法を用いて分布を正確に推定できる新しい分布系 Bend と Mix Models を導入する。
論文 参考訳(メタデータ) (2023-10-16T10:02:24Z) - Statistically Efficient Bayesian Sequential Experiment Design via
Reinforcement Learning with Cross-Entropy Estimators [15.461927416747582]
強化学習は、実験のシーケンスを設計するための改善された設計ポリシーを学ぶことができる。
本稿では,関節モデル分布のクロスエントロピーとフレキシブルな提案分布に基づく代替推定器を提案する。
提案手法は,従来の手法の指数サンプルの複雑さを克服し,高いEIG値のより正確な推定値を提供する。
論文 参考訳(メタデータ) (2023-05-29T00:35:52Z) - Online simulator-based experimental design for cognitive model selection [74.76661199843284]
本稿では,抽出可能な確率を伴わない計算モデルを選択する実験設計手法BOSMOSを提案する。
シミュレーション実験では,提案手法により,既存のLFI手法に比べて最大2桁の精度でモデルを選択することができることを示した。
論文 参考訳(メタデータ) (2023-03-03T21:41:01Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Leveraging Global Parameters for Flow-based Neural Posterior Estimation [90.21090932619695]
実験観測に基づくモデルのパラメータを推定することは、科学的方法の中心である。
特に困難な設定は、モデルが強く不確定であるとき、すなわち、パラメータの異なるセットが同一の観測をもたらすときである。
本稿では,グローバルパラメータを共有する観測の補助的セットによって伝達される付加情報を利用して,その不確定性を破る手法を提案する。
論文 参考訳(メタデータ) (2021-02-12T12:23:13Z) - Sequential Bayesian Experimental Design for Implicit Models via Mutual
Information [12.68659360172393]
自然科学と医学科学に特に興味を持つモデルのクラスは暗黙のモデルである。
モデルパラメータとシミュレーションデータ間の相互情報(MI)を実用関数として用いたパラメータ推定のための新しい逐次設計フレームワークを考案する。
我々のフレームワークは、テストされた様々な暗黙のモデルに対して効率的であることが分かり、数回の反復で正確なパラメータ推定が得られます。
論文 参考訳(メタデータ) (2020-03-20T16:52:10Z) - Bayesian Experimental Design for Implicit Models by Mutual Information
Neural Estimation [16.844481439960663]
データ・ジェネレーションの分布が魅力的ながサンプリングが可能なインプリシット・モデルは、自然科学においてユビキタスである。
基本的な問題は、収集したデータが最も有用になるように実験を設計する方法である。
しかし、暗黙のモデルでは、この手法は後続計算の計算コストが高いために著しく妨げられている。
ニューラルネットワークをトレーニングして、MIの下位境界を最大化することで、最適な設計と後部を共同で決定できることが示される。
論文 参考訳(メタデータ) (2020-02-19T12:09:42Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
変分分布とは異なる後部近似を用いて意思決定を行うことが示唆された。
これらの理論的な結果から,最適モデルに関するいくつかの近似的提案を学習することを提案する。
おもちゃの例に加えて,単細胞RNAシークエンシングのケーススタディも紹介する。
論文 参考訳(メタデータ) (2020-02-17T19:23:36Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。