論文の概要: A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal Experimental Design
- arxiv url: http://arxiv.org/abs/2408.09582v1
- Date: Sun, 18 Aug 2024 19:45:49 GMT
- ステータス: 処理完了
- システム内更新日: 2024-08-20 18:14:03.976508
- Title: A Likelihood-Free Approach to Goal-Oriented Bayesian Optimal Experimental Design
- Title(参考訳): ゴール指向ベイズ最適設計への準自由アプローチ
- Authors: Atlanta Chakraborty, Xun Huan, Tommie Catanach,
- Abstract要約: 本稿では,非線形観測および予測モデルを用いたGO-OEDの計算方法であるLF-GO-OED(likelihood-free goal-oriented optimal experiment design)を紹介する。
暗黙のモデルに適応するように特別に設計されている。
本手法は既存の方法によるベンチマーク問題で検証され,疫学および神経科学の科学的応用で実証された。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conventional Bayesian optimal experimental design seeks to maximize the expected information gain (EIG) on model parameters. However, the end goal of the experiment often is not to learn the model parameters, but to predict downstream quantities of interest (QoIs) that depend on the learned parameters. And designs that offer high EIG for parameters may not translate to high EIG for QoIs. Goal-oriented optimal experimental design (GO-OED) thus directly targets to maximize the EIG of QoIs. We introduce LF-GO-OED (likelihood-free goal-oriented optimal experimental design), a computational method for conducting GO-OED with nonlinear observation and prediction models. LF-GO-OED is specifically designed to accommodate implicit models, where the likelihood is intractable. In particular, it builds a density ratio estimator from samples generated from approximate Bayesian computation (ABC), thereby sidestepping the need for likelihood evaluations or density estimations. The overall method is validated on benchmark problems with existing methods, and demonstrated on scientific applications of epidemiology and neural science.
- Abstract(参考訳): ベイズ最適設計は、モデルパラメータの期待情報ゲイン(EIG)を最大化する。
しかし、実験の最終目標はモデルパラメータを学習するのではなく、学習したパラメータに依存する下流の関心量(QoIs)を予測することである。
また、パラメータに対して高いEIGを提供する設計は、QoIに対して高いEIGに変換できない可能性がある。
したがって、ゴール指向最適実験設計(GO-OED)はQoIのEIGを最大化する。
本稿では,非線形観測および予測モデルを用いたGO-OEDの計算方法であるLF-GO-OED(likelihood-free goal-oriented optimal experiment design)を紹介する。
LF-GO-OEDは暗黙のモデルに対応するように設計されている。
特に、近似ベイズ計算(ABC)から得られたサンプルから密度比推定器を構築し、確率評価や密度推定の必要性をサイドステッピングする。
本手法は既存の方法によるベンチマーク問題に基づいて検証され,疫学および神経科学の科学的応用について実証された。
関連論文リスト
- Expected Information Gain Estimation via Density Approximations: Sample Allocation and Dimension Reduction [0.40964539027092906]
一般非線形/非ガウス的設定におけるEIG推定のためのフレキシブルトランスポートに基づくスキームを定式化する。
この最適サンプル割り当てにより、得られたEIG推定器のMSEは標準ネストされたモンテカルロスキームよりも高速に収束することを示す。
次に、パラメータを投影し、低次元部分空間に観測することで失われる相互情報の勾配に基づく上界を導出することにより、高次元でのEIGの推定に対処する。
論文 参考訳(メタデータ) (2024-11-13T07:22:50Z) - Goal-Oriented Bayesian Optimal Experimental Design for Nonlinear Models using Markov Chain Monte Carlo [0.0]
本稿では,非線形観測および予測モデルに適した予測目標指向OED(GO-OED)の計算フレームワークを提案する。
GO-OEDはQoIで最大のEIGを提供する実験的な設計を求めている。
非線形GO-OED法の有効性を実証し,従来の非GO-OED法と比較した。
論文 参考訳(メタデータ) (2024-03-26T19:49:58Z) - Protein Design with Guided Discrete Diffusion [67.06148688398677]
タンパク質設計における一般的なアプローチは、生成モデルと条件付きサンプリングのための識別モデルを組み合わせることである。
離散拡散モデルのためのガイダンス手法であるdiffusioN Optimized Smpling (NOS)を提案する。
NOSは、構造に基づく手法の重要な制限を回避し、シーケンス空間で直接設計を行うことができる。
論文 参考訳(メタデータ) (2023-05-31T16:31:24Z) - Statistically Efficient Bayesian Sequential Experiment Design via
Reinforcement Learning with Cross-Entropy Estimators [15.461927416747582]
強化学習は、実験のシーケンスを設計するための改善された設計ポリシーを学ぶことができる。
本稿では,関節モデル分布のクロスエントロピーとフレキシブルな提案分布に基づく代替推定器を提案する。
提案手法は,従来の手法の指数サンプルの複雑さを克服し,高いEIG値のより正確な推定値を提供する。
論文 参考訳(メタデータ) (2023-05-29T00:35:52Z) - Prediction-Oriented Bayesian Active Learning [51.426960808684655]
予測情報ゲイン(EPIG)は、パラメータではなく予測空間における情報ゲインを測定する。
EPIGは、さまざまなデータセットやモデルにわたるBALDと比較して、予測パフォーマンスが向上する。
論文 参考訳(メタデータ) (2023-04-17T10:59:57Z) - Validation Diagnostics for SBI algorithms based on Normalizing Flows [55.41644538483948]
本研究は,NFに基づく多次元条件(後)密度推定器の検証診断を容易にすることを提案する。
また、局所的な一貫性の結果に基づいた理論的保証も提供する。
この作業は、より良い特定モデルの設計を支援したり、新しいSBIアルゴリズムの開発を促進するのに役立つだろう。
論文 参考訳(メタデータ) (2022-11-17T15:48:06Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - Cauchy-Schwarz Regularized Autoencoder [68.80569889599434]
変分オートエンコーダ(VAE)は、強力で広く使われている生成モデルのクラスである。
GMMに対して解析的に計算できるCauchy-Schwarz分散に基づく新しい制約対象を導入する。
本研究の目的は,密度推定,教師なしクラスタリング,半教師なし学習,顔分析における変分自動エンコーディングモデルの改善である。
論文 参考訳(メタデータ) (2021-01-06T17:36:26Z) - SUMO: Unbiased Estimation of Log Marginal Probability for Latent
Variable Models [80.22609163316459]
無限級数のランダム化トランケーションに基づく潜在変数モデルに対して、ログ境界確率の非バイアス推定器とその勾配を導入する。
推定器を用いてトレーニングしたモデルは、同じ平均計算コストに対して、標準的な重要度サンプリングに基づくアプローチよりも優れたテストセット確率を与えることを示す。
論文 参考訳(メタデータ) (2020-04-01T11:49:30Z) - Bayesian Experimental Design for Implicit Models by Mutual Information
Neural Estimation [16.844481439960663]
データ・ジェネレーションの分布が魅力的ながサンプリングが可能なインプリシット・モデルは、自然科学においてユビキタスである。
基本的な問題は、収集したデータが最も有用になるように実験を設計する方法である。
しかし、暗黙のモデルでは、この手法は後続計算の計算コストが高いために著しく妨げられている。
ニューラルネットワークをトレーニングして、MIの下位境界を最大化することで、最適な設計と後部を共同で決定できることが示される。
論文 参考訳(メタデータ) (2020-02-19T12:09:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。