論文の概要: Low-code LLM: Visual Programming over LLMs
- arxiv url: http://arxiv.org/abs/2304.08103v1
- Date: Mon, 17 Apr 2023 09:27:40 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-18 15:55:23.039266
- Title: Low-code LLM: Visual Programming over LLMs
- Title(参考訳): Low-code LLM: LLM上のビジュアルプログラミング
- Authors: Yuzhe Cai, Shaoguang Mao, Wenshan Wu, Zehua Wang, Yaobo Liang, Tao Ge,
Chenfei Wu, Wang You, Ting Song, Yan Xia, Jonathan Tien, Nan Duan
- Abstract要約: 本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
6種類のシンプルなローコードビジュアルプログラミングインタラクションが組み込まれており、すべてクリック、ドラッグ、テキスト編集によってサポートされている。
低コードLSMの利点として、制御可能な生成結果、ユーザフレンドリなヒューマン-LLMインタラクション、広く適用可能なシナリオの3つを挙げる。
- 参考スコア(独自算出の注目度): 49.37966903221752
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effectively utilizing LLMs for complex tasks is challenging, often involving
a time-consuming and uncontrollable prompt engineering process. This paper
introduces a novel human-LLM interaction framework, Low-code LLM. It
incorporates six types of simple low-code visual programming interactions, all
supported by clicking, dragging, or text editing, to achieve more controllable
and stable responses. Through visual interaction with a graphical user
interface, users can incorporate their ideas into the workflow without writing
trivial prompts. The proposed Low-code LLM framework consists of a Planning LLM
that designs a structured planning workflow for complex tasks, which can be
correspondingly edited and confirmed by users through low-code visual
programming operations, and an Executing LLM that generates responses following
the user-confirmed workflow. We highlight three advantages of the low-code LLM:
controllable generation results, user-friendly human-LLM interaction, and
broadly applicable scenarios. We demonstrate its benefits using four typical
applications. By introducing this approach, we aim to bridge the gap between
humans and LLMs, enabling more effective and efficient utilization of LLMs for
complex tasks. Our system will be soon publicly available at LowCodeLLM.
- Abstract(参考訳): 複雑なタスクにllmを効果的に利用することは困難であり、しばしば時間と制御不能な迅速なエンジニアリングプロセスを伴う。
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
6種類のシンプルなローコードビジュアルプログラミングインタラクションが組み込まれており、全てクリック、ドラッグ、テキスト編集によってサポートされ、より制御可能で安定したレスポンスを実現する。
グラフィカルなユーザインタフェースとの視覚的なインタラクションを通じて、ユーザーは簡単なプロンプトを書くことなく、自分のアイデアをワークフローに組み込むことができる。
提案するLow-code LLMフレームワークは、複雑なタスクのための構造化計画ワークフローを設計するプランニングLLMと、ユーザ確認ワークフローに従って応答を生成するExecuting LLMから構成される。
制御可能な生成結果,ユーザフレンドリなヒューマン-LLMインタラクション,広く適用可能なシナリオの3つのメリットを強調した。
4つの典型的なアプリケーションを用いてその利点を実証する。
このアプローチを導入することで、人間とLLMのギャップを埋め、複雑なタスクにLLMをより効果的かつ効率的に活用することを目指している。
私たちのシステムは、間もなくLowCodeLLMで公開されます。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - MTLLM: LLMs are Meaning-Typed Code Constructs [7.749453456370407]
本稿では,大規模言語モデル(LLM)をプログラミングに統合するための簡易なアプローチを提案する。
提案手法は,従来のプログラミング言語と自然言語を自動的に翻訳するために,既存のプログラムのセマンティック・リッチネスを利用する。
そこで本研究では,SOTA LLMソフトウェア開発ツールと比較し,本手法の完全機能および実運用レベルの実装について述べる。
論文 参考訳(メタデータ) (2024-05-14T21:12:01Z) - Self-Training Large Language Models for Improved Visual Program Synthesis With Visual Reinforcement [93.73648674743097]
ビジュアルプログラム合成は、構成型コンピュータビジョンタスクのための大規模言語モデルの推論能力を利用するための有望なアプローチである。
それまでの作業では、視覚プログラムを合成するために、凍結LDMを使用した数発のプロンプトを使用していた。
トレーニング用ビジュアルプログラムのデータセットは存在せず、ビジュアルプログラムデータセットの取得は簡単にクラウドソーシングできない。
論文 参考訳(メタデータ) (2024-04-06T13:25:00Z) - Small LLMs Are Weak Tool Learners: A Multi-LLM Agent [73.54562551341454]
大規模言語モデル(LLM)エージェントはスタンドアロンのLLMの機能を大幅に拡張する。
本稿では、上記の機能をプランナー、呼び出し元、要約器に分解する新しい手法を提案する。
このモジュール化されたフレームワークは、個々の更新と、それぞれの機能を構築するための小さなLLMの潜在的な使用を容易にする。
論文 参考訳(メタデータ) (2024-01-14T16:17:07Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - InfMLLM: A Unified Framework for Visual-Language Tasks [44.29407348046122]
マルチモーダルな大言語モデル (MLLM) が注目されている。
この作業は、LLMがより視覚的な言語に関連したタスクに取り組むことを可能にすることを目的としている。
InfMLLMは、最先端(SOTA)パフォーマンスまたは最近のMLLMに匹敵するパフォーマンスを達成する。
論文 参考訳(メタデータ) (2023-11-12T09:58:16Z) - AskIt: Unified Programming Interface for Programming with Large Language
Models [0.0]
大規模言語モデル(LLM)は創発能力として知られるユニークな現象を示し、多くのタスクにまたがって適応性を示す。
本稿では,LLM用に特別に設計されたドメイン固有言語であるAskItを紹介する。
50タスクにわたって、AskItは簡潔なプロンプトを生成し、ベンチマークよりも16.14パーセントのプロンプト長の削減を実現した。
論文 参考訳(メタデータ) (2023-08-29T21:44:27Z) - Enabling Intelligent Interactions between an Agent and an LLM: A Reinforcement Learning Approach [31.6589518077397]
大規模言語モデル(LLM)は、大量のテキストデータセットから得られた膨大な量の世界の知識を符号化する。
LLMは、高レベルな命令を提供することで、複雑なシーケンシャルな意思決定タスクを解決するための実施エージェントを支援することができる。
本研究では,高レベルの命令に対してLLMを問合せする必要がある場合に学習する強化学習ベースのアプローチである When2Ask を提案する。
論文 参考訳(メタデータ) (2023-06-06T11:49:09Z) - Check Your Facts and Try Again: Improving Large Language Models with
External Knowledge and Automated Feedback [127.75419038610455]
大規模言語モデル(LLM)は、ダウンストリームタスクの多くに対して、人間のような、流動的な応答を生成することができる。
本稿では,プラグ・アンド・プレイモジュールのセットでブラックボックスのLSMを増強するLSM-Augmenterシステムを提案する。
論文 参考訳(メタデータ) (2023-02-24T18:48:43Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。