論文の概要: MTLLM: LLMs are Meaning-Typed Code Constructs
- arxiv url: http://arxiv.org/abs/2405.08965v2
- Date: Mon, 14 Oct 2024 21:20:40 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-16 13:57:40.567374
- Title: MTLLM: LLMs are Meaning-Typed Code Constructs
- Title(参考訳): MTLLM: LLMは意味型コード構造
- Authors: Jason Mars, Yiping Kang, Jayanaka L. Dantanarayana, Chandra Irugalbandara, Kugesan Sivasothynathan, Christopher Clarke, Baichuan Li, Lingjia Tang,
- Abstract要約: 本稿では,大規模言語モデル(LLM)をプログラミングに統合するための簡易なアプローチを提案する。
提案手法は,従来のプログラミング言語と自然言語を自動的に翻訳するために,既存のプログラムのセマンティック・リッチネスを利用する。
そこで本研究では,SOTA LLMソフトウェア開発ツールと比較し,本手法の完全機能および実運用レベルの実装について述べる。
- 参考スコア(独自算出の注目度): 7.749453456370407
- License:
- Abstract: Programming with Generative AI (GenAI) models, which frequently involves using large language models (LLMs) to accomplish specific functionalities, has experienced significant growth in adoption. However, it remains a complex process, as developers often need to manually configure text inputs for LLMs, a practice known as prompt engineering, and subsequently translate the natural language outputs produced by LLMs back into symbolic code representations (values, types, etc.) that the code can understand. Although some infrastructures are proposed to facilitate prompt engineering, these tools are often complex and challenging for developers to adopt. Instead, this paper presents a simplified approach to integrating LLMs into programming through the introduction of an abstraction layer that hides the complexity of gluing traditional programming and LLMs together. Our approach utilizes the semantic richness in existing programs to automatically translate between the traditional programming languages and the natural language understood by LLMs, eliminating developer efforts such as prompt engineering, decreasing the overall complexity. Specifically in this paper, we design three novel code constructs coupled with an automated runtime management system that bridges the gap between traditional symbolic code and LLMs. We present a fully functional and production-grade implementation for our approach and compare it to SOTA LLM software development tools. We present real-world case studies demonstrating the efficacy of our proposed abstraction that seamlessly utilizes LLMs to solve problems in place of potentially complex traditional programming logic.
- Abstract(参考訳): ジェネレーティブAI(GenAI)モデルによるプログラミングは、大きな言語モデル(LLM)を特定の機能を達成するために使用することが多いが、採用が著しく伸びている。
しかし、開発者はしばしば、プロンプトエンジニアリングとして知られる LLM のテキスト入力を手動で設定し、その後 LLM が生成した自然言語出力を、コードが理解できるシンボリックなコード表現(値、型など)に変換する必要があるため、複雑なプロセスである。
いくつかのインフラストラクチャは、迅速なエンジニアリングを促進するために提案されているが、これらのツールは、しばしば複雑で、開発者が採用するのは難しい。
そこで本論文では,従来のプログラミングとLLMを結合する複雑性を隠蔽する抽象レイヤを導入することで,LLMをプログラミングに統合するための簡易なアプローチを提案する。
提案手法では,従来のプログラミング言語とLLMが理解する自然言語の自動翻訳に,既存のプログラムのセマンティック・リッチネスを利用する。
本稿では,従来のシンボルコードとLLMのギャップを埋める自動実行管理システムと組み合わせて,新しい3つのコード構造を設計する。
そこで本研究では,SOTA LLMソフトウェア開発ツールと比較し,本手法の完全機能および実運用レベルの実装について述べる。
本稿では,LLMをシームレスに利用して,潜在的に複雑なプログラミングロジックの代わりに問題を解く抽象化の有効性を実世界のケーススタディで実証する。
関連論文リスト
- Multi-Programming Language Sandbox for LLMs [78.99934332554963]
大規模言語モデル(LLM)用のコンパイラと分析ツールから統一的で包括的なフィードバックを提供するように設計された、アウト・オブ・ザ・ボックスのマルチプログラミング言語サンドボックス
コードのプログラミング言語を自動的に識別し、独立したサブサンドボックス内でコンパイルして実行することで、安全性と安定性を確保することができる。
論文 参考訳(メタデータ) (2024-10-30T14:46:43Z) - Codellm-Devkit: A Framework for Contextualizing Code LLMs with Program Analysis Insights [9.414198519543564]
codellm-devkit (以下, CLDK') は,プログラム解析のプロセスを大幅に単純化したオープンソースライブラリである。
CLDKは開発者に対して直感的でユーザフレンドリなインターフェースを提供しています。
論文 参考訳(メタデータ) (2024-10-16T20:05:59Z) - Optimizing Token Usage on Large Language Model Conversations Using the Design Structure Matrix [49.1574468325115]
大規模言語モデルは、多くの分野やタスクにおいてユビキタスになる。
トークンの使用を減らすこと、短いコンテキストウィンドウ、限られた出力サイズ、トークンの取り込みと生成に関連するコストといった課題を克服する必要がある。
この作業は、エンジニアリング設計の分野からLLM会話最適化にデザイン構造マトリックスをもたらす。
論文 参考訳(メタデータ) (2024-10-01T14:38:36Z) - Large Language Models are Interpretable Learners [53.56735770834617]
本稿では,Large Language Models(LLM)とシンボルプログラムの組み合わせによって,表現性と解釈可能性のギャップを埋めることができることを示す。
自然言語プロンプトを持つ事前訓練されたLLMは、生の入力を自然言語の概念に変換することができる解釈可能な膨大なモジュールセットを提供する。
LSPが学んだ知識は自然言語の記述と記号規則の組み合わせであり、人間(解釈可能)や他のLLMに容易に転送できる。
論文 参考訳(メタデータ) (2024-06-25T02:18:15Z) - Synthetic Programming Elicitation for Text-to-Code in Very Low-Resource Programming and Formal Languages [21.18996339478024]
SPEAC(emphsynthetic programming elicitation and compilation)を紹介する。
SPEACは、より頻繁に、意味的正しさを犠牲にすることなく、構文的に正しいプログラムを生成する。
UCLID5形式検証言語のケーススタディにおいて,SPEACの性能を実証的に評価した。
論文 参考訳(メタデータ) (2024-06-05T22:16:19Z) - An Empirical Study on Usage and Perceptions of LLMs in a Software
Engineering Project [1.433758865948252]
大規模言語モデル(LLM)は人工知能の飛躍であり、人間の言語を用いたタスクに優れる。
本稿では、AI生成したコードを分析し、コード生成に使用するプロンプトと人間の介入レベルを分析し、コードをコードベースに統合する。
ソフトウェア開発の初期段階において,LSMが重要な役割を担っていることが示唆された。
論文 参考訳(メタデータ) (2024-01-29T14:32:32Z) - If LLM Is the Wizard, Then Code Is the Wand: A Survey on How Code
Empowers Large Language Models to Serve as Intelligent Agents [81.60906807941188]
大型言語モデル(LLM)は、自然言語と形式言語(コード)の組み合わせに基づいて訓練される
コードは、標準構文、論理一貫性、抽象化、モジュール性を備えた高レベルの目標を実行可能なステップに変換する。
論文 参考訳(メタデータ) (2024-01-01T16:51:20Z) - When Do Program-of-Thoughts Work for Reasoning? [51.2699797837818]
本稿では,コードと推論能力の相関性を測定するために,複雑性に富んだ推論スコア(CIRS)を提案する。
具体的には、抽象構文木を用いて構造情報をエンコードし、論理的複雑性を計算する。
コードはhttps://github.com/zjunlp/EasyInstructのEasyInstructフレームワークに統合される。
論文 参考訳(メタデータ) (2023-08-29T17:22:39Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
本稿では,人間-LLMインタラクションフレームワークであるLow-code LLMを紹介する。
より制御可能で安定した応答を実現するために、6種類のシンプルなローコードビジュアルプログラミングインタラクションを組み込んでいる。
ユーザフレンドリなインタラクション,制御可能な生成,広い適用性という,低コード LLM の3つの利点を強調した。
論文 参考訳(メタデータ) (2023-04-17T09:27:40Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。