Convolutional neural network for earthquake detection
- URL: http://arxiv.org/abs/2304.08328v1
- Date: Mon, 17 Apr 2023 14:47:17 GMT
- Title: Convolutional neural network for earthquake detection
- Authors: Jos\'e Augusto Proen\c{c}a Maia Devienne
- Abstract summary: Increase in seismic activity has produced an exponential growth of seismic data recording.
Current earthquake detection methods miss many of the low-magnitude earthquake that are masked by the seismic noise.
Authors proposed a convolutional neural network (ConvNetQuake) to detect and locate earthquake events from seismic records.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The recent exploitation of natural resources and associated waste water
injection in the subsurface have induced many small and moderate earthquakes in
the tectonically quiet Central United States. This increase in seismic activity
has produced an exponential growth of seismic data recording, which brings the
necessity for efficient algorithms to reliably detect earthquakes among this
large amount of noisy data. Most current earthquake detection methods are
designed for moderate and large events and, consequently, they tend to miss
many of the low-magnitude earthquake that are masked by the seismic noise.
Perol et. al (2018) has focused on the problem of earthquake detection by using
a deep-learning approach: the authors proposed a convolutional neural network
(ConvNetQuake) to detect and locate earthquake events from seismic records.
This reports aims at reproducing part of the methodology proposed by the
author, which is the implementation of a convolutional neural network for
classification of events (i.e., earthquake vs. noise) from seismic records.
Related papers
- Estimating Earthquake Magnitude in Sentinel-1 Imagery via Ranking [5.71478837100808]
We propose to pose the estimation of earthquake magnitudes as a metric-learning problem.
We train models to estimate earthquake magnitude from Sentinel-1 satellite imagery and to additionally rank pairwise samples.
Our experiments show at max a 30%+ improvement in MAE over prior regression-only based methods.
arXiv Detail & Related papers (2024-07-25T15:35:44Z) - Learning Physics for Unveiling Hidden Earthquake Ground Motions via Conditional Generative Modeling [43.056135090637646]
Conditional Generative Modeling for Ground Motion (CGM-GM)
We propose a novel artificial intelligence (AI) simulator to synthesize high-frequency and spatially continuous earthquake ground motion waveforms.
CGM-GM demonstrates a strong potential for outperforming a state-of-the-art non-ergodic empirical ground motion model.
arXiv Detail & Related papers (2024-07-21T08:23:37Z) - Generalized Neural Networks for Real-Time Earthquake Early Warning [22.53592578343506]
We employ a data recombination method to create earthquakes occurring at any location with arbitrary station distributions for neural network training.
The trained models can then be applied to various regions with different monitoring setups for earthquake detection and parameter evaluation.
Our models reliably report earthquake locations and magnitudes within 4 seconds after the first triggered station, with mean errors of 2.6-6.3 km and 0.05-0.17, respectively.
arXiv Detail & Related papers (2023-12-23T10:45:21Z) - Histogram Layer Time Delay Neural Networks for Passive Sonar
Classification [58.720142291102135]
A novel method combines a time delay neural network and histogram layer to incorporate statistical contexts for improved feature learning and underwater acoustic target classification.
The proposed method outperforms the baseline model, demonstrating the utility in incorporating statistical contexts for passive sonar target recognition.
arXiv Detail & Related papers (2023-07-25T19:47:26Z) - Deep Impulse Responses: Estimating and Parameterizing Filters with Deep
Networks [76.830358429947]
Impulse response estimation in high noise and in-the-wild settings is a challenging problem.
We propose a novel framework for parameterizing and estimating impulse responses based on recent advances in neural representation learning.
arXiv Detail & Related papers (2022-02-07T18:57:23Z) - A CNN-BiLSTM Model with Attention Mechanism for Earthquake Prediction [0.0]
This paper proposes a novel prediction method based on attention mechanism (AM), convolution neural network (CNN), and bi-directional long short-term memory (BiLSTM) models.
It can predict the number and maximum magnitude of earthquakes in each area of mainland China-based on the earthquake catalog of the region.
arXiv Detail & Related papers (2021-12-26T20:16:20Z) - OKSP: A Novel Deep Learning Automatic Event Detection Pipeline for
Seismic Monitoringin Costa Rica [0.0938460348620674]
We introduce OKSP, a novel automatic earthquake detection pipeline for seismic monitoring in Costa Rica.
OKSP is 100% exhaustive and 82% precise, resulting in an F1 score of 0.90.
This effort represents the very first attempt for automatically detecting earthquakes in Costa Rica using deep learning methods and demonstrates that, in the near future, earthquake monitoring routines will be carried out entirely by AI algorithms.
arXiv Detail & Related papers (2021-09-06T20:24:49Z) - Towards advancing the earthquake forecasting by machine learning of
satellite data [22.87513332935679]
We develop a novel machine learning method, namely Inverse Boosting Pruning Trees (IBPT), to issue short-term forecast based on the satellite data of 1,371 earthquakes of magnitude six or above.
Our proposed method outperforms all the six selected baselines and shows a strong capability in improving the likelihood of earthquake forecasting across different earthquake databases.
arXiv Detail & Related papers (2021-01-31T02:29:48Z) - WaveTransform: Crafting Adversarial Examples via Input Decomposition [69.01794414018603]
We introduce WaveTransform', that creates adversarial noise corresponding to low-frequency and high-frequency subbands, separately (or in combination)
Experiments show that the proposed attack is effective against the defense algorithm and is also transferable across CNNs.
arXiv Detail & Related papers (2020-10-29T17:16:59Z) - Seismic horizon detection with neural networks [62.997667081978825]
This paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
The main contribution of this paper is an open-sourced research of applying binary segmentation approach to the task of horizon detection on multiple real seismic cubes with a focus on inter-cube generalization of the predictive model.
arXiv Detail & Related papers (2020-01-10T11:30:50Z) - SeismiQB -- a novel framework for deep learning with seismic data [62.997667081978825]
We've developed an open-sourced Python framework with emphasis on working with neural networks.
It provides convenient tools for fast loading seismic cubes in multiple data formats.
It also generates crops of desired shape and augmenting them with various transformations.
arXiv Detail & Related papers (2020-01-10T10:45:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.