論文の概要: RS2G: Data-Driven Scene-Graph Extraction and Embedding for Robust
Autonomous Perception and Scenario Understanding
- arxiv url: http://arxiv.org/abs/2304.08600v1
- Date: Mon, 17 Apr 2023 20:38:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 16:31:17.174414
- Title: RS2G: Data-Driven Scene-Graph Extraction and Embedding for Robust
Autonomous Perception and Scenario Understanding
- Title(参考訳): RS2G:ロバストな自律認識とシナリオ理解のためのデータ駆動のシーングラフ抽出と埋め込み
- Authors: Arnav Vaibhav Malawade, Shih-Yuan Yu, Junyao Wang, Mohammad Abdullah
Al Faruque
- Abstract要約: 本稿では、自律的なシーン理解タスクを解決するために、道路シーンの最良のグラフ表現をRS2Gがどのように抽出するかを示す。
また、ルールベースのグラフエッジの相対的重要性をRS2Gが識別し、インテリジェントなグラフ空間調整を可能にする方法を示す。
- 参考スコア(独自算出の注目度): 10.26216322014047
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Human drivers naturally reason about interactions between road users to
understand and safely navigate through traffic. Thus, developing autonomous
vehicles necessitates the ability to mimic such knowledge and model
interactions between road users to understand and navigate unpredictable,
dynamic environments. However, since real-world scenarios often differ from
training datasets, effectively modeling the behavior of various road users in
an environment remains a significant research challenge. This reality
necessitates models that generalize to a broad range of domains and explicitly
model interactions between road users and the environment to improve scenario
understanding. Graph learning methods address this problem by modeling
interactions using graph representations of scenarios. However, existing
methods cannot effectively transfer knowledge gained from the training domain
to real-world scenarios. This constraint is caused by the domain-specific rules
used for graph extraction that can vary in effectiveness across domains,
limiting generalization ability. To address these limitations, we propose
RoadScene2Graph (RS2G): a data-driven graph extraction and modeling approach
that learns to extract the best graph representation of a road scene for
solving autonomous scene understanding tasks. We show that RS2G enables better
performance at subjective risk assessment than rule-based graph extraction
methods and deep-learning-based models. RS2G also improves generalization and
Sim2Real transfer learning, which denotes the ability to transfer knowledge
gained from simulation datasets to unseen real-world scenarios. We also present
ablation studies showing how RS2G produces a more useful graph representation
for downstream classifiers. Finally, we show how RS2G can identify the relative
importance of rule-based graph edges and enables intelligent graph sparsity
tuning.
- Abstract(参考訳): 人間ドライバーは当然、道路利用者間のやりとりを理解し、安全に交通をナビゲートする。
したがって、自動運転車の開発には、予測不可能でダイナミックな環境を理解し、ナビゲートするために、そのような知識を模倣し、道路利用者間の相互作用をモデル化する能力が必要である。
しかし、実世界のシナリオはトレーニングデータセットとは異なることが多いため、環境における様々な道路利用者の振る舞いを効果的にモデル化することは重要な研究課題である。
この現実は、幅広い領域に一般化するモデルを必要とし、シナリオ理解を改善するために、道路利用者と環境の間の相互作用を明示的にモデル化する。
グラフ学習手法はシナリオのグラフ表現を用いて相互作用をモデル化することでこの問題に対処する。
しかし,既存の手法では,学習領域から得られた知識を現実のシナリオに効果的に伝達することはできない。
この制約は、グラフ抽出に使用されるドメイン固有の規則によって引き起こされる。
これらの制約に対処するために、我々は、自律的なシーン理解タスクを解決するために、道路シーンの最良のグラフ表現を抽出することを学ぶデータ駆動グラフ抽出およびモデリングアプローチであるRoadScene2Graph(RS2G)を提案する。
rs2gは,規則に基づくグラフ抽出法やディープラーニングモデルよりも,主観的リスクアセスメントにおいて優れたパフォーマンスを実現する。
RS2Gは一般化とSim2Real転送学習を改善しており、シミュレーションデータセットから得られた知識を実世界のシナリオに転送する能力を示している。
また、RS2Gが下流分類器に対してより有用なグラフ表現をいかに生み出すかを示す。
最後に、RS2Gがルールベースのグラフエッジの相対的重要性を識別し、インテリジェントなグラフ空間調整を可能にする方法を示す。
関連論文リスト
- High-Order Evolving Graphs for Enhanced Representation of Traffic Dynamics [4.856478623606766]
本稿では,自律運転における表現性の向上を目的とした,高次進化グラフを用いた交通動態解析のための革新的なフレームワークを提案する。
提案手法は,交通シーン内の複雑な相互作用をリアルタイムにモデル化する双方向の時間的二部グラフを構築する。
論文 参考訳(メタデータ) (2024-09-17T14:00:58Z) - Gradient Transformation: Towards Efficient and Model-Agnostic Unlearning for Dynamic Graph Neural Networks [66.70786325911124]
グラフアンラーニングは、ユーザのプライバシ保護と、望ましくないデータによるネガティブな影響軽減に不可欠なツールとして登場した。
DGNNの普及に伴い、動的グラフアンラーニングの実装を検討することが不可欠となる。
DGNNアンラーニングを実装するために,効率的,効率的,モデルに依存しない,事後処理手法を提案する。
論文 参考訳(メタデータ) (2024-05-23T10:26:18Z) - Graph Augmentation for Recommendation [30.77695833436189]
コントラスト学習によるグラフ強化はレコメンデーションシステム分野において大きな注目を集めている。
本稿では,自己教師付き信号を生成し,レコメンダシステムを強化したGraphAugというフレームワークを提案する。
GraphAugフレームワークはグラフ情報ボトルネック(GIB)の正規化拡張パラダイムを取り入れており、情報的自己超越情報を自動で抽出する。
論文 参考訳(メタデータ) (2024-03-25T11:47:53Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Model Inversion Attacks against Graph Neural Networks [65.35955643325038]
グラフニューラルネットワーク(GNN)に対するモデル反転攻撃について検討する。
本稿では,プライベートトレーニンググラフデータを推測するためにGraphMIを提案する。
実験の結果,このような防御効果は十分ではないことが示され,プライバシー攻撃に対するより高度な防御が求められている。
論文 参考訳(メタデータ) (2022-09-16T09:13:43Z) - Handling Distribution Shifts on Graphs: An Invariance Perspective [78.31180235269035]
我々は、グラフ上のOOD問題を定式化し、新しい不変学習手法である探索・拡張リスク最小化(EERM)を開発する。
EERMは、複数の仮想環境からのリスクの分散を最大化するために、敵対的に訓練された複数のコンテキストエクスプローラーを利用する。
理論的に有効なOOD解の保証を示すことによって,本手法の有効性を実証する。
論文 参考訳(メタデータ) (2022-02-05T02:31:01Z) - Trajectory Prediction with Graph-based Dual-scale Context Fusion [43.51107329748957]
本稿では,Dual Scale Predictorというグラフベースの軌道予測ネットワークを提案する。
静的および動的駆動コンテキストを階層的にエンコードする。
提案したデュアルスケールコンテキスト融合ネットワークにより、DSPは正確で人間らしいマルチモーダル軌道を生成することができる。
論文 参考訳(メタデータ) (2021-11-02T13:42:16Z) - GraphMI: Extracting Private Graph Data from Graph Neural Networks [59.05178231559796]
GNNを反転させてトレーニンググラフのプライベートグラフデータを抽出することを目的とした textbfGraph textbfModel textbfInversion attack (GraphMI) を提案する。
具体的には,グラフ特徴の空間性と滑らかさを保ちながら,グラフエッジの離散性に対処する勾配モジュールを提案する。
エッジ推論のためのグラフトポロジ、ノード属性、ターゲットモデルパラメータを効率的に活用するグラフ自動エンコーダモジュールを設計する。
論文 参考訳(メタデータ) (2021-06-05T07:07:52Z) - EV-VGCNN: A Voxel Graph CNN for Event-based Object Classification [18.154951807178943]
イベントカメラは、少ない強度変化を報告し、ポータブルデバイス上での視覚知覚と理解のための低消費電力、高ダイナミックレンジ、高応答速度の顕著な利点を目立たせる。
イベントベースの学習手法は、従来の2次元学習アルゴリズムを適用するために、イベントを密度の高いフレームベースの表現に統合することで、オブジェクト認識において大きな成功を収めている。
これらのアプローチは、スパース・トゥ・ディエンス変換の期間中に多くの冗長な情報を導入し、重量と大容量のモデルを必要とするため、リアルタイムアプリケーションにおけるイベントカメラの可能性を制限する。
論文 参考訳(メタデータ) (2021-06-01T04:07:03Z) - Scene-Graph Augmented Data-Driven Risk Assessment of Autonomous Vehicle
Decisions [1.4086978333609153]
本研究では,シーングラフを中間表現として利用する新しいデータ駆動手法を提案する。
我々のアプローチには、マルチリレーショングラフ畳み込みネットワーク、ロングショート長期記憶ネットワーク、そして運転操作の主観的リスクをモデル化するための注意層が含まれる。
提案手法は,大型(96.4%対91.2%)および小型(91.8%対71.2%)の最先端アプローチよりも高い分類精度が得られることを示す。
また、実世界のデータセットでテストすると、合成データセットでトレーニングされたモデルの平均精度が87.8%に達することを示す。
論文 参考訳(メタデータ) (2020-08-31T07:41:27Z) - Graph Representation Learning via Graphical Mutual Information
Maximization [86.32278001019854]
本稿では,入力グラフとハイレベルな隠蔽表現との相関を測る新しい概念であるGMIを提案する。
我々は,グラフニューラルエンコーダの入力と出力の間でGMIを最大化することで訓練された教師なし学習モデルを開発する。
論文 参考訳(メタデータ) (2020-02-04T08:33:49Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。