論文の概要: Quantum Architecture Search for Quantum Monte Carlo Integration via
Conditional Parameterized Circuits with Application to Finance
- arxiv url: http://arxiv.org/abs/2304.08793v2
- Date: Mon, 18 Sep 2023 16:22:03 GMT
- ステータス: 処理完了
- システム内更新日: 2023-09-20 00:09:14.166957
- Title: Quantum Architecture Search for Quantum Monte Carlo Integration via
Conditional Parameterized Circuits with Application to Finance
- Title(参考訳): 条件付きパラメータ付き回路による量子モンテカルロ積分の量子アーキテクチャ探索とファイナンスへの応用
- Authors: Mark-Oliver Wolf, Tom Ewen, Ivica Turkalj
- Abstract要約: 古典的モンテカルロアルゴリズムは、振幅推定(AE)を用いて理論的に量子コンピュータ上にスピンアップできる
我々は、パラメータ化量子回路の事前学習に基づく簡単なアプローチを開発する。
AEアルゴリズムのサブルーチンとして使用できるように、条件付き変種に変換する方法を示す。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Classical Monte Carlo algorithms can theoretically be sped up on a quantum
computer by employing amplitude estimation (AE). To realize this, an efficient
implementation of state-dependent functions is crucial. We develop a
straightforward approach based on pretraining parameterized quantum circuits,
and show how they can be transformed into their conditional variant, making
them usable as a subroutine in an AE algorithm. To identify a suitable circuit,
we propose a genetic optimization approach that combines variable ansatzes and
data encoding. We apply our algorithm to the problem of pricing financial
derivatives. At the expense of a costly pretraining process, this results in a
quantum circuit implementing the derivatives' payoff function more efficiently
than previously existing quantum algorithms. In particular, we compare the
performance for European vanilla and basket options.
- Abstract(参考訳): 古典的モンテカルロアルゴリズムは、振幅推定(AE)を用いて理論的に量子コンピュータ上にスピンアップすることができる。
これを実現するためには、状態依存関数の効率的な実装が不可欠である。
パラメータ化量子回路の事前学習に基づく簡易な手法を開発し,条件付き変種への変換方法を示し,aeアルゴリズムのサブルーチンとして利用できることを示す。
適切な回路を同定するために,可変 ansatzes とデータエンコーディングを組み合わせた遺伝的最適化手法を提案する。
金融デリバティブの価格設定問題にアルゴリズムを適用した。
コストのかかる事前学習過程を犠牲にして、既存の量子アルゴリズムよりも効率的にデリバティブのペイオフ関数を実装する量子回路が得られる。
特に、ヨーロッパのバニラとバスケットの選択肢のパフォーマンスを比較します。
関連論文リスト
- Bayesian Parameterized Quantum Circuit Optimization (BPQCO): A task and hardware-dependent approach [49.89480853499917]
変分量子アルゴリズム(VQA)は、最適化と機械学習問題を解決するための有望な量子代替手段として登場した。
本稿では,回路設計が2つの分類問題に対して得られる性能に与える影響を実験的に示す。
また、実量子コンピュータのシミュレーションにおいて、ノイズの存在下で得られた回路の劣化について検討する。
論文 参考訳(メタデータ) (2024-04-17T11:00:12Z) - Surrogate optimization of variational quantum circuits [1.0546736060336612]
変分量子固有解法は、多くの応用に影響を及ぼすことのできる短期的アルゴリズムとして評価される。
収束性を改善するアルゴリズムや手法を見つけることは、VQEの短期ハードウェアの能力を加速するために重要である。
論文 参考訳(メタデータ) (2024-04-03T18:00:00Z) - Measurement-Based Quantum Approximate Optimization [0.24861619769660645]
近似最適化のための計測ベースの量子コンピューティングプロトコルに焦点をあてる。
我々は,QUBO問題の広範かつ重要なクラスにQAOAを適用するための測定パターンを導出する。
我々は、より伝統的な量子回路に対する我々のアプローチのリソース要件とトレードオフについて論じる。
論文 参考訳(メタデータ) (2024-03-18T06:59:23Z) - Adaptive Circuit Learning of Born Machine: Towards Realization of
Amplitude Embedding and Data Loading [7.88657961743755]
本稿では,ACLBM(Adaptive Circuit Learning of Born Machine)という新しいアルゴリズムを提案する。
我々のアルゴリズムは、ターゲット状態に存在する複雑な絡み合いを最もよく捉える2ビットの絡み合いゲートを選択的に統合するように調整されている。
実験結果は、振幅埋め込みによる実世界のデータの符号化における我々のアプローチの習熟度を裏付けるものである。
論文 参考訳(メタデータ) (2023-11-29T16:47:31Z) - Indirect Quantum Approximate Optimization Algorithms: application to the
TSP [1.1786249372283566]
量子交互作用素 Ansatz はベクトルの集合を記述するハミルトニアンを効率的にモデル化するためにユニタリ作用素の一般パラメータ化された族を考える。
このアルゴリズムは,(1)量子マシン上で実行される量子パラメトリゼーション回路が弦ベクトルの集合をモデル化し,(2)古典機械で実行される古典的メタ最適化ループ,(3)各弦ベクトル計算の平均コストを推定する。
論文 参考訳(メタデータ) (2023-11-06T17:39:14Z) - Parallel circuit implementation of variational quantum algorithms [0.0]
本稿では,変分量子アルゴリズム(VQA)の量子回路を分割し,並列トレーニングと実行を可能にする手法を提案する。
本稿では,この問題からの固有構造を同定可能な最適化問題に適用する。
我々は,本手法がより大きな問題に対処できるだけでなく,1つのスライスのみを用いてパラメータをトレーニングしながら,完全なVQAモデルを実行することもできることを示した。
論文 参考訳(メタデータ) (2023-04-06T12:52:29Z) - Automatic and effective discovery of quantum kernels [43.702574335089736]
量子コンピューティングは、カーネルマシンが量子カーネルを利用してデータ間の類似度を表現できるようにすることで、機械学習モデルを強化することができる。
本稿では,ニューラルアーキテクチャ検索やAutoMLと同じような最適化手法を用いて,異なるアプローチを提案する。
その結果、高エネルギー物理問題に対する我々のアプローチを検証した結果、最良のシナリオでは、手動設計のアプローチに関して、テストの精度を一致または改善できることが示された。
論文 参考訳(メタデータ) (2022-09-22T16:42:14Z) - Synergy Between Quantum Circuits and Tensor Networks: Short-cutting the
Race to Practical Quantum Advantage [43.3054117987806]
本稿では,量子回路の初期化を最適化するために,古典計算資源を利用するスケーラブルな手法を提案する。
本手法は, PQCのトレーニング性, 性能を, 様々な問題において著しく向上させることを示す。
古典的コンピュータを用いて限られた量子資源を増強する手法を実証することにより、量子コンピューティングにおける量子と量子に着想を得たモデル間の相乗効果を実証する。
論文 参考訳(メタデータ) (2022-08-29T15:24:03Z) - Quantum algorithm for stochastic optimal stopping problems with
applications in finance [60.54699116238087]
有名な最小二乗モンテカルロ (LSM) アルゴリズムは、線形最小二乗回帰とモンテカルロシミュレーションを組み合わせることで、最適停止理論の問題を解決する。
プロセスへの量子アクセス、最適な停止時間を計算するための量子回路、モンテカルロの量子技術に基づく量子LSMを提案する。
論文 参考訳(メタデータ) (2021-11-30T12:21:41Z) - Adaptive pruning-based optimization of parameterized quantum circuits [62.997667081978825]
Variisyハイブリッド量子古典アルゴリズムは、ノイズ中間量子デバイスの使用を最大化する強力なツールである。
我々は、変分量子アルゴリズムで使用されるそのようなアンサーゼを「効率的な回路訓練」(PECT)と呼ぶ戦略を提案する。
すべてのアンサッツパラメータを一度に最適化する代わりに、PECTは一連の変分アルゴリズムを起動する。
論文 参考訳(メタデータ) (2020-10-01T18:14:11Z) - Preparation of excited states for nuclear dynamics on a quantum computer [117.44028458220427]
量子コンピュータ上で励起状態を作成するための2つの異なる方法を研究する。
シミュレーションおよび実量子デバイス上でこれらの手法をベンチマークする。
これらの結果から,フォールトトレラントデバイスに優れたスケーリングを実現するために設計された量子技術が,接続性やゲート忠実性に制限されたデバイスに実用的なメリットをもたらす可能性が示唆された。
論文 参考訳(メタデータ) (2020-09-28T17:21:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。