論文の概要: Solving Math Word Problems by Combining Language Models With Symbolic
Solvers
- arxiv url: http://arxiv.org/abs/2304.09102v1
- Date: Sun, 16 Apr 2023 04:16:06 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-19 14:05:06.056574
- Title: Solving Math Word Problems by Combining Language Models With Symbolic
Solvers
- Title(参考訳): 言語モデルと記号型解法を組み合わせた計算語問題の解法
- Authors: Joy He-Yueya, Gabriel Poesia, Rose E. Wang, Noah D. Goodman
- Abstract要約: 大規模言語モデル(LLM)は複雑な推論と計算を行うために外部ツールと組み合わせることができる。
本稿では,変数と方程式の集合として単語問題を段階的に形式化するLLMと,外部記号解法を併用する手法を提案する。
提案手法は,GSM8Kベンチマークにおける元のPALに匹敵する精度を達成し,ALGEBRAでPALを絶対20%上回る性能を示した。
- 参考スコア(独自算出の注目度): 28.010617102877923
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automatically generating high-quality step-by-step solutions to math word
problems has many applications in education. Recently, combining large language
models (LLMs) with external tools to perform complex reasoning and calculation
has emerged as a promising direction for solving math word problems, but prior
approaches such as Program-Aided Language model (PAL) are biased towards simple
procedural problems and less effective for problems that require declarative
reasoning. We propose an approach that combines an LLM that can incrementally
formalize word problems as a set of variables and equations with an external
symbolic solver that can solve the equations. Our approach achieves comparable
accuracy to the original PAL on the GSM8K benchmark of math word problems and
outperforms PAL by an absolute 20% on ALGEBRA, a new dataset of more
challenging word problems extracted from Algebra textbooks. Our work highlights
the benefits of using declarative and incremental representations when
interfacing with an external tool for solving complex math word problems. Our
data and prompts are publicly available at
https://github.com/joyheyueya/declarative-math-word-problem.
- Abstract(参考訳): 数学語問題に対する高品質なステップバイステップソリューションの自動生成は、教育に多くの応用がある。
近年,大規模言語モデル (LLM) と外部ツールを組み合わせて複雑な推論や計算を行う手法が数学語問題を解く上で有望な方向として登場したが,プログラム支援言語モデル (PAL) のような従来の手法は,単純な手続き的問題に偏り,宣言的推論を必要とする問題に対して効果が低い。
本稿では,変数と方程式の集合として単語問題を段階的に形式化できる LLM と,方程式を解ける外部記号解法を併用する手法を提案する。
提案手法は,GSM8Kベンチマークにおける元のPALに匹敵する精度を達成し,Algebra教科書から抽出したより難解な単語問題のデータセットであるALGEBRAでPALを絶対20%上回った。
本研究は,複雑な数学用語問題を解くための外部ツールとの対話において,宣言的表現とインクリメンタル表現を使用することの利点を強調する。
私たちのデータとプロンプトはhttps://github.com/joyheyueya/declarative-math-word-problem.comで公開されています。
関連論文リスト
- MathCAMPS: Fine-grained Synthesis of Mathematical Problems From Human Curricula [33.5782208232163]
本研究では,高品質な数学問題を大規模に合成する手法であるMath CAMPSを提案する。
それぞれの標準を形式文法でエンコードし、様々な記号問題とその解をサンプリングする。
我々は、記号構造からフォローアップ質問を導き、それらをフォローアップ単語問題に変換する。
論文 参考訳(メタデータ) (2024-07-01T01:56:28Z) - Do Language Models Exhibit the Same Cognitive Biases in Problem Solving as Human Learners? [140.9751389452011]
本研究では,大言語モデル(LLM)の偏りを,算術語問題を解く際に,子どもに知られているものと関連づけて検討する。
我々は,これらの各テストに対して,問題特徴のきめ細かい制御を可能にするニューロシンボリックアプローチを用いて,新しい単語問題を生成する。
論文 参考訳(メタデータ) (2024-01-31T18:48:20Z) - VerityMath: Advancing Mathematical Reasoning by Self-Verification Through Unit Consistency [33.760209585322606]
プログラムベースの解法を用いて,数学語問題に対する強力なオープンソースLLMの性能について検討する。
本稿では,各量の単位を定義し,数理演算時の単位の整合性を確保することによる体系的アプローチを提案する。
単体一貫性を取り入れた我々のアプローチは、現在、そうでないアプローチに比べてわずかに性能が劣っている。
論文 参考訳(メタデータ) (2023-11-13T09:06:58Z) - MathPrompter: Mathematical Reasoning using Large Language Models [7.953723258038284]
大規模言語モデル (LLM) は算術的推論タスクを解く際の性能に制限がある。
MathPrompterはZero-shot-of- Thoughtプロンプト技術を使って複数の代数式やPython関数を生成し、異なる方法で同じ数学問題を解く。
論文 参考訳(メタデータ) (2023-03-04T04:43:49Z) - Highlighting Named Entities in Input for Auto-Formulation of
Optimization Problems [0.0]
本稿では,線形プログラム語問題を数学的定式化に変換する手法を提案する。
入力に名前付きエンティティを活用し、これらのエンティティをハイライトするためにインプットを拡張します。
提案手法は,NL4Optコンペティションへの応募者の中で最も高い精度を実現し,生成トラックにおける第1位を確保した。
論文 参考訳(メタデータ) (2022-12-26T16:13:57Z) - UniGeo: Unifying Geometry Logical Reasoning via Reformulating
Mathematical Expression [127.68780714438103]
計算と証明の2つの主要な幾何学問題は、通常2つの特定のタスクとして扱われる。
我々は4,998の計算問題と9,543の証明問題を含むUniGeoという大規模統一幾何問題ベンチマークを構築した。
また,複数タスクの幾何変換フレームワークであるGeoformerを提案し,計算と証明を同時に行う。
論文 参考訳(メタデータ) (2022-12-06T04:37:51Z) - PAL: Program-aided Language Models [112.94785609781503]
自然言語問題を理解するために,プログラム支援言語モデル(PaL)を提案する。
PaLはソリューションステップをPythonインタプリタのようなプログラムランタイムにオフロードする。
私たちは12のベンチマークで新しい最先端の結果を設定しました。
論文 参考訳(メタデータ) (2022-11-18T18:56:13Z) - JiuZhang: A Chinese Pre-trained Language Model for Mathematical Problem
Understanding [74.12405417718054]
本稿では,中国初の数学的事前学習言語モデル(PLM)を提示することにより,機械の数学的知性向上を目指す。
他の標準のNLPタスクとは異なり、数学的テキストは問題文に数学的用語、記号、公式を含むため理解が難しい。
基礎課程と上級課程の両方からなる数学PLMの学習を改善するための新しいカリキュラム事前学習手法を設計する。
論文 参考訳(メタデータ) (2022-06-13T17:03:52Z) - SMART: A Situation Model for Algebra Story Problems via Attributed
Grammar [74.1315776256292]
本稿では, 問題解決における人間の精神状態を表現する心理学研究から生まれた, emphsituation modelの概念を紹介する。
提案モデルでは,より優れた解釈性を保ちながら,従来のすべてのニューラルソルバを大きなマージンで上回る結果が得られた。
論文 参考訳(メタデータ) (2020-12-27T21:03:40Z) - Reverse Operation based Data Augmentation for Solving Math Word Problems [37.26159426631031]
最近のモデルはパフォーマンスボトルネックに達し、トレーニングのためにより高品質なデータを必要としている。
本稿では,数学用語問題の数学的論理を逆転する新しいデータ拡張法を提案する。
2つのSOTA数学単語問題解決モデルに拡張データを適用し、その結果を強力なデータ拡張ベースラインと比較する。
論文 参考訳(メタデータ) (2020-10-04T11:59:59Z) - Machine Number Sense: A Dataset of Visual Arithmetic Problems for
Abstract and Relational Reasoning [95.18337034090648]
文法モデルを用いて自動生成される視覚的算術問題からなるデータセット、MNS(Machine Number Sense)を提案する。
これらの視覚的算術問題は幾何学的フィギュアの形をしている。
我々は、この視覚的推論タスクのベースラインとして、4つの主要なニューラルネットワークモデルを用いて、MNSデータセットをベンチマークする。
論文 参考訳(メタデータ) (2020-04-25T17:14:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。