DiFaReli++: Diffusion Face Relighting with Consistent Cast Shadows
- URL: http://arxiv.org/abs/2304.09479v4
- Date: Sat, 25 Jan 2025 18:24:20 GMT
- Title: DiFaReli++: Diffusion Face Relighting with Consistent Cast Shadows
- Authors: Puntawat Ponglertnapakorn, Nontawat Tritrong, Supasorn Suwajanakorn,
- Abstract summary: We introduce a novel approach to single-view face relighting in the wild, addressing challenges such as global illumination and cast shadows.
We propose a single-shot relighting framework that requires just one network pass, given pre-processed data, and even outperforms the teacher model across all metrics.
- Score: 11.566896201650056
- License:
- Abstract: We introduce a novel approach to single-view face relighting in the wild, addressing challenges such as global illumination and cast shadows. A common scheme in recent methods involves intrinsically decomposing an input image into 3D shape, albedo, and lighting, then recomposing it with the target lighting. However, estimating these components is error-prone and requires many training examples with ground-truth lighting to generalize well. Our work bypasses the need for accurate intrinsic estimation and can be trained solely on 2D images without any light stage data, relit pairs, multi-view images, or lighting ground truth. Our key idea is to leverage a conditional diffusion implicit model (DDIM) for decoding a disentangled light encoding along with other encodings related to 3D shape and facial identity inferred from off-the-shelf estimators. We propose a novel conditioning technique that simplifies modeling the complex interaction between light and geometry. It uses a rendered shading reference along with a shadow map, inferred using a simple and effective technique, to spatially modulate the DDIM. Moreover, we propose a single-shot relighting framework that requires just one network pass, given pre-processed data, and even outperforms the teacher model across all metrics. Our method realistically relights in-the-wild images with temporally consistent cast shadows under varying lighting conditions. We achieve state-of-the-art performance on the standard benchmark Multi-PIE and rank highest in user studies.
Related papers
- GI-GS: Global Illumination Decomposition on Gaussian Splatting for Inverse Rendering [6.820642721852439]
We present GI-GS, a novel inverse rendering framework that leverages 3D Gaussian Splatting (3DGS) and deferred shading.
In our framework, we first render a G-buffer to capture the detailed geometry and material properties of the scene.
With the G-buffer and previous rendering results, the indirect lighting can be calculated through a lightweight path tracing.
arXiv Detail & Related papers (2024-10-03T15:58:18Z) - Lite2Relight: 3D-aware Single Image Portrait Relighting [87.62069509622226]
Lite2Relight is a novel technique that can predict 3D consistent head poses of portraits.
By utilizing a pre-trained geometry-aware encoder and a feature alignment module, we map input images into a relightable 3D space.
This includes producing 3D-consistent results of the full head, including hair, eyes, and expressions.
arXiv Detail & Related papers (2024-07-15T07:16:11Z) - Neural Gaffer: Relighting Any Object via Diffusion [43.87941408722868]
We propose a novel end-to-end 2D relighting diffusion model, called Neural Gaffer.
Our model takes a single image of any object and can synthesize an accurate, high-quality relit image under any novel lighting condition.
We evaluate our model on both synthetic and in-the-wild Internet imagery and demonstrate its advantages in terms of generalization and accuracy.
arXiv Detail & Related papers (2024-06-11T17:50:15Z) - Learning to Relight Portrait Images via a Virtual Light Stage and
Synthetic-to-Real Adaptation [76.96499178502759]
Relighting aims to re-illuminate the person in the image as if the person appeared in an environment with the target lighting.
Recent methods rely on deep learning to achieve high-quality results.
We propose a new approach that can perform on par with the state-of-the-art (SOTA) relighting methods without requiring a light stage.
arXiv Detail & Related papers (2022-09-21T17:15:58Z) - Geometry-aware Single-image Full-body Human Relighting [37.381122678376805]
Single-image human relighting aims to relight a target human under new lighting conditions by decomposing the input image into albedo, shape and lighting.
Previous methods suffer from both the entanglement between albedo and lighting and the lack of hard shadows.
Our framework is able to generate photo-realistic high-frequency shadows such as cast shadows under challenging lighting conditions.
arXiv Detail & Related papers (2022-07-11T10:21:02Z) - Physically-Based Editing of Indoor Scene Lighting from a Single Image [106.60252793395104]
We present a method to edit complex indoor lighting from a single image with its predicted depth and light source segmentation masks.
We tackle this problem using two novel components: 1) a holistic scene reconstruction method that estimates scene reflectance and parametric 3D lighting, and 2) a neural rendering framework that re-renders the scene from our predictions.
arXiv Detail & Related papers (2022-05-19T06:44:37Z) - A Shading-Guided Generative Implicit Model for Shape-Accurate 3D-Aware
Image Synthesis [163.96778522283967]
We propose a shading-guided generative implicit model that is able to learn a starkly improved shape representation.
An accurate 3D shape should also yield a realistic rendering under different lighting conditions.
Our experiments on multiple datasets show that the proposed approach achieves photorealistic 3D-aware image synthesis.
arXiv Detail & Related papers (2021-10-29T10:53:12Z) - Learning Indoor Inverse Rendering with 3D Spatially-Varying Lighting [149.1673041605155]
We address the problem of jointly estimating albedo, normals, depth and 3D spatially-varying lighting from a single image.
Most existing methods formulate the task as image-to-image translation, ignoring the 3D properties of the scene.
We propose a unified, learning-based inverse framework that formulates 3D spatially-varying lighting.
arXiv Detail & Related papers (2021-09-13T15:29:03Z) - Relighting Images in the Wild with a Self-Supervised Siamese
Auto-Encoder [62.580345486483886]
We propose a self-supervised method for image relighting of single view images in the wild.
The method is based on an auto-encoder which deconstructs an image into two separate encodings.
We train our model on large-scale datasets such as Youtube 8M and CelebA.
arXiv Detail & Related papers (2020-12-11T16:08:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.