Mining social media data for biomedical signals and health-related
behavior
- URL: http://arxiv.org/abs/2001.10285v1
- Date: Tue, 28 Jan 2020 12:08:22 GMT
- Title: Mining social media data for biomedical signals and health-related
behavior
- Authors: Rion Brattig Correia and Ian B. Wood and Johan Bollen and Luis M.
Rocha
- Abstract summary: Social media data has been increasingly used to study biomedical and health-related phenomena.
We review recent work in mining social media for biomedical, epidemiological, and social phenomena information.
We discuss a variety of innovative uses of social media data for health-related applications and important limitations in social media data access and use.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Social media data has been increasingly used to study biomedical and
health-related phenomena. From cohort level discussions of a condition to
planetary level analyses of sentiment, social media has provided scientists
with unprecedented amounts of data to study human behavior and response
associated with a variety of health conditions and medical treatments. Here we
review recent work in mining social media for biomedical, epidemiological, and
social phenomena information relevant to the multilevel complexity of human
health. We pay particular attention to topics where social media data analysis
has shown the most progress, including pharmacovigilance, sentiment analysis
especially for mental health, and other areas. We also discuss a variety of
innovative uses of social media data for health-related applications and
important limitations in social media data access and use.
Related papers
- Decoding Digital Influence: The Role of Social Media Behavior in Scientific Stratification Through Logistic Attribution Method [6.285608271780605]
This study comprehensively analyzes the impact of social media on scientific stratification and mobility.
It uses an Explainable Logistic Analysis from a meso-level perspective to explore the correlation between social media behaviors and scientific social stratification.
arXiv Detail & Related papers (2024-07-23T02:01:40Z) - SMP Challenge: An Overview and Analysis of Social Media Prediction Challenge [63.311045291016555]
Social Media Popularity Prediction (SMPP) is a crucial task that involves automatically predicting future popularity values of online posts.
This paper summarizes the challenging task, data, and research progress.
arXiv Detail & Related papers (2024-05-17T02:36:14Z) - Emotion fusion for mental illness detection from social media: A survey [16.410940528107115]
Mental illnesses are one of the most prevalent public health problems worldwide.
There has been a growing research interest in the early detection of mental illness by analysing user-generated posts on social media.
According to the correlation between emotions and mental illness, leveraging and fusing emotion information has developed into a valuable research topic.
arXiv Detail & Related papers (2023-04-19T08:28:34Z) - Combating Health Misinformation in Social Media: Characterization,
Detection, Intervention, and Open Issues [24.428582199602822]
The rise of various social media platforms also enables the proliferation of online misinformation.
Health misinformation in social media has become an emerging research direction that attracts increasing attention from researchers of different disciplines.
arXiv Detail & Related papers (2022-11-10T01:52:12Z) - Aggression and "hate speech" in communication of media users: analysis
of control capabilities [50.591267188664666]
Authors studied the possibilities of mutual influence of users in new media.
They found a high level of aggression and hate speech when discussing an urgent social problem - measures for COVID-19 fighting.
Results can be useful for developing media content in a modern digital environment.
arXiv Detail & Related papers (2022-08-25T15:53:32Z) - Co-Located Human-Human Interaction Analysis using Nonverbal Cues: A
Survey [71.43956423427397]
We aim to identify the nonverbal cues and computational methodologies resulting in effective performance.
This survey differs from its counterparts by involving the widest spectrum of social phenomena and interaction settings.
Some major observations are: the most often used nonverbal cue, computational method, interaction environment, and sensing approach are speaking activity, support vector machines, and meetings composed of 3-4 persons equipped with microphones and cameras, respectively.
arXiv Detail & Related papers (2022-07-20T13:37:57Z) - Didn't see that coming: a survey on non-verbal social human behavior
forecasting [47.99589136455976]
Non-verbal social human behavior forecasting has increasingly attracted the interest of the research community in recent years.
Its direct applications to human-robot interaction and socially-aware human motion generation make it a very attractive field.
We define the behavior forecasting problem for multiple interactive agents in a generic way that aims at unifying the fields of social signals prediction and human motion forecasting.
arXiv Detail & Related papers (2022-03-04T18:25:30Z) - Social media emotion macroscopes reflect emotional experiences in
society at large [0.12656629989060433]
Social media generate data on human behaviour at large scales and over long periods of time.
Recent research has shown weak correlations between social media emotions and affect questionnaires at the individual level.
No research has tested the validity of social media emotion macroscopes to track the temporal evolution of emotions at the level of a whole society.
arXiv Detail & Related papers (2021-07-28T09:40:42Z) - Assessing the Severity of Health States based on Social Media Posts [62.52087340582502]
We propose a multiview learning framework that models both the textual content as well as contextual-information to assess the severity of the user's health state.
The diverse NLU views demonstrate its effectiveness on both the tasks and as well as on the individual disease to assess a user's health.
arXiv Detail & Related papers (2020-09-21T03:45:14Z) - Social Media Usage in Kuwait: A Comparison of Perspectives Between
Healthcare Practitioners and Patients [0.0]
We conducted user studies to understand the behavior of patients and medical practitioners in social media toward healthcare and medical purposes.
Through an online survey, we identified a decrease in patients and medical practitioners use of social media for medical purposes.
Findings highlighted the need to design a social media platform that support healthcare online campaign, professional career identity, medical repository, and social privacy setting.
arXiv Detail & Related papers (2020-05-16T08:12:03Z) - I Know Where You Are Coming From: On the Impact of Social Media Sources
on AI Model Performance [79.05613148641018]
We will study the performance of different machine learning models when being learned on multi-modal data from different social networks.
Our initial experimental results reveal that social network choice impacts the performance.
arXiv Detail & Related papers (2020-02-05T11:10:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.