論文の概要: LLIC: Large Receptive Field Transform Coding with Adaptive Weights for
Learned Image Compression
- arxiv url: http://arxiv.org/abs/2304.09571v3
- Date: Thu, 25 Jan 2024 09:10:16 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-26 18:37:29.686924
- Title: LLIC: Large Receptive Field Transform Coding with Adaptive Weights for
Learned Image Compression
- Title(参考訳): LLIC:学習画像圧縮のための適応重み付き大規模受容野変換符号化
- Authors: Wei Jiang, Peirong Ning, Jiayu Yang, Yongqi Zhai, Feng Gao, and
Ronggang Wang
- Abstract要約: 学習画像圧縮(LLIC)のための適応重み付き大規模受容場変換符号化を提案する。
学習した画像圧縮コミュニティではじめて、控えめな複雑さを維持しながら冗長性を高めるために、カーネルベースの奥行きに関する大規模な畳み込みを導入しました。
また,大規模カーネルの潜在能力を十分に活用するために,改良されたトレーニング手法についても検討した。
- 参考スコア(独自算出の注目度): 27.02281402358164
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Effective Receptive field (ERF) plays an important role in transform coding,
which determines how much redundancy can be removed at most during transform
and how many spatial priors can be utilized to synthesize textures during
inverse transform. Existing methods rely on stacks of small kernels, whose ERF
remains not large enough instead, or heavy non-local attention mechanisms,
which limit the potential of high resolution image coding. To tackle this
issue, we propose Large Receptive Field Transform Coding with Adaptive Weights
for Learned Image Compression (LLIC). Specifically, for the first time in
learned image compression community, we introduce a few large kernel-based
depth-wise convolutions to reduce more redundancy while maintaining modest
complexity. Due to wide range of image diversity, we propose to enhance the
adaptability of convolutions via generating weights in a self-conditioned
manner. The large kernels cooperate with non-linear embedding and gate
mechanisms for better expressiveness and lighter point-wise interactions. We
also investigate improved training techniques to fully exploit the potential of
large kernels. In addition, to enhance the interactions among channels, we
propose the adaptive channel-wise bit allocation via generating channel
importance factor in a self-conditioned manner. To demonstrate the
effectiveness of proposed transform coding, we align the entropy model to
compare with existing transform methods and obtain models LLIC-STF, LLIC-ELIC,
LLIC-TCM. Extensive experiments demonstrate our proposed LLIC models have
significant improvements over corresponding baselines and achieve
state-of-the-art performances and better trade-off between performance and
complexity.
- Abstract(参考訳): 効果的な受容場(erf)は変換符号化において重要な役割を担っており、変換中にどれだけの冗長性を除去できるか、また逆変換中にテクスチャを合成するのにどれだけの空間的プリエントを使うことができるかを決定する。
既存の手法では、ERFが十分大きくない小さなカーネルのスタックや、高解像度画像符号化の可能性を制限する重い非局所的な注意機構に頼っている。
この問題に対処するために,学習画像圧縮(LLIC)のための適応重み付きLarge Receptive Field Transform Codingを提案する。
具体的には,学習画像圧縮コミュニティにおいて初めて,少ない複雑さを維持しつつ冗長性を向上させるために,カーネルベースの奥行き方向畳み込みをいくつか導入した。
画像の多様性の幅が広いため,自己条件で重みを生成することで畳み込みの適応性を高めることを提案する。
大きなカーネルは非線形埋め込みとゲート機構と協力し、表現性の向上とより軽いポイントワイド相互作用を実現する。
また,大規模カーネルの潜在能力を十分に活用するためのトレーニング手法の改善についても検討した。
さらに,チャネル間の相互作用を高めるために,チャネル重要度を自己条件で生成する適応的なチャネルワイドビット割り当てを提案する。
提案手法の有効性を示すため,エントロピーモデルを既存の変換法と比較し,LLIC-STF,LLIC-ELIC,LLIC-TCMのモデルを求める。
大規模な実験により,提案したLLICモデルは,対応するベースラインよりも大幅に改善され,最先端のパフォーマンスが達成され,性能と複雑性のトレードオフが向上した。
関連論文リスト
- Causal Context Adjustment Loss for Learned Image Compression [72.7300229848778]
近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在の技術のほとんどは、自己回帰エントロピーモデルを備えたVAEベースで、デコードされた因果コンテキストを利用してRD性能を向上する。
本稿では,提案した因果文脈調整損失を用いて因果文脈を的確に調整する方法を初めて検討する。
論文 参考訳(メタデータ) (2024-10-07T09:08:32Z) - Effective Diffusion Transformer Architecture for Image Super-Resolution [63.254644431016345]
画像超解像のための効果的な拡散変換器(DiT-SR)を設計する。
実際には、DiT-SRは全体のU字型アーキテクチャを活用し、すべての変圧器ブロックに対して均一な等方性設計を採用する。
我々は、広く使われているAdaLNの制限を分析し、周波数適応型時間-ステップ条件付けモジュールを提案する。
論文 参考訳(メタデータ) (2024-09-29T07:14:16Z) - Multi-Context Dual Hyper-Prior Neural Image Compression [10.349258638494137]
入力画像から局所的情報と大域的情報の両方を効率的にキャプチャするトランスフォーマーに基づく非線形変換を提案する。
また、2つの異なるハイパープライヤを組み込んだ新しいエントロピーモデルを導入し、潜在表現のチャネル間および空間的依存関係をモデル化する。
実験の結果,提案するフレームワークは,速度歪み性能の観点から,最先端の手法よりも優れた性能を示すことがわかった。
論文 参考訳(メタデータ) (2023-09-19T17:44:44Z) - Dynamic Kernel-Based Adaptive Spatial Aggregation for Learned Image
Compression [63.56922682378755]
本稿では,空間アグリゲーション機能の拡張に焦点をあて,動的カーネルベースの変換符号化を提案する。
提案したアダプティブアグリゲーションはカーネルオフセットを生成し、コンテント条件付き範囲の有効な情報をキャプチャして変換を支援する。
実験により,本手法は,最先端の学習手法と比較して,3つのベンチマークにおいて高い速度歪み性能が得られることを示した。
論文 参考訳(メタデータ) (2023-08-17T01:34:51Z) - AICT: An Adaptive Image Compression Transformer [18.05997169440533]
我々は、より単純で効果的なTranformerベースのチャネルワイド自動回帰事前モデルを提案し、絶対画像圧縮変換器(ICT)を実現する。
提案したICTは、潜在表現からグローバルとローカルの両方のコンテキストをキャプチャできる。
我々は、サンドイッチのConvNeXtベースのプリ/ポストプロセッサで学習可能なスケーリングモジュールを活用し、よりコンパクトな潜在表現を正確に抽出する。
論文 参考訳(メタデータ) (2023-07-12T11:32:02Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - Towards Composable Distributions of Latent Space Augmentations [0.0]
本稿では、複数の拡張を簡単に組み合わせることができる潜在空間画像拡張のための構成可能なフレームワークを提案する。
我々のフレームワークは変分オートエンコーダアーキテクチャに基づいており、潜在空間自体の線形変換による拡張に新しいアプローチを採用している。
これらの特性は、特定の拡張のペアでより優れたパフォーマンスを示すが、潜在空間を他の拡張のセットに転送してパフォーマンスを変更することができる。
論文 参考訳(メタデータ) (2023-03-06T19:37:01Z) - Learned Image Compression with Generalized Octave Convolution and
Cross-Resolution Parameter Estimation [5.238765582868391]
本稿では,オクターブの畳み込みを利用して,遅延表現を高分解能 (HR) と低分解能 (LR) に分解する多分解能画像圧縮フレームワークを提案する。
実験結果から,本手法は,最先端の学習画像圧縮法と比較して,復号時間を約73.35 %,93.44 %削減できることがわかった。
論文 参考訳(メタデータ) (2022-09-07T08:21:52Z) - Cross-receptive Focused Inference Network for Lightweight Image
Super-Resolution [64.25751738088015]
トランスフォーマーに基づく手法は、単一画像超解像(SISR)タスクにおいて顕著な性能を示した。
動的に特徴を抽出するために文脈情報を組み込む必要がある変換器は無視される。
我々は,CNNとTransformerを混合したCTブロックのカスケードで構成される,軽量なクロスレセプティブ・フォーカスド・推論・ネットワーク(CFIN)を提案する。
論文 参考訳(メタデータ) (2022-07-06T16:32:29Z) - CSformer: Bridging Convolution and Transformer for Compressive Sensing [65.22377493627687]
本稿では,CNNからの詳細な空間情報を活用するためのハイブリッドフレームワークと,表現学習の強化を目的としたトランスフォーマーが提供するグローバルコンテキストを統合することを提案する。
提案手法は、適応的なサンプリングとリカバリからなるエンドツーエンドの圧縮画像センシング手法である。
実験により, 圧縮センシングにおける専用トランスアーキテクチャの有効性が示された。
論文 参考訳(メタデータ) (2021-12-31T04:37:11Z) - Image-specific Convolutional Kernel Modulation for Single Image
Super-resolution [85.09413241502209]
本稿では,新しい画像特異的畳み込み変調カーネル(IKM)を提案する。
我々は、画像や特徴のグローバルな文脈情報を利用して、畳み込みカーネルを適応的に調整するための注意重みを生成する。
単一画像超解像実験により,提案手法は最先端手法よりも優れた性能を示した。
論文 参考訳(メタデータ) (2021-11-16T11:05:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。