論文の概要: Causal Context Adjustment Loss for Learned Image Compression
- arxiv url: http://arxiv.org/abs/2410.04847v1
- Date: Mon, 7 Oct 2024 09:08:32 GMT
- ステータス: 処理完了
- システム内更新日: 2024-11-02 01:38:08.334385
- Title: Causal Context Adjustment Loss for Learned Image Compression
- Title(参考訳): 学習画像圧縮のための因果文脈調整損失
- Authors: Minghao Han, Shiyin Jiang, Shengxi Li, Xin Deng, Mai Xu, Ce Zhu, Shuhang Gu,
- Abstract要約: 近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在の技術のほとんどは、自己回帰エントロピーモデルを備えたVAEベースで、デコードされた因果コンテキストを利用してRD性能を向上する。
本稿では,提案した因果文脈調整損失を用いて因果文脈を的確に調整する方法を初めて検討する。
- 参考スコア(独自算出の注目度): 72.7300229848778
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In recent years, learned image compression (LIC) technologies have surpassed conventional methods notably in terms of rate-distortion (RD) performance. Most present learned techniques are VAE-based with an autoregressive entropy model, which obviously promotes the RD performance by utilizing the decoded causal context. However, extant methods are highly dependent on the fixed hand-crafted causal context. The question of how to guide the auto-encoder to generate a more effective causal context benefit for the autoregressive entropy models is worth exploring. In this paper, we make the first attempt in investigating the way to explicitly adjust the causal context with our proposed Causal Context Adjustment loss (CCA-loss). By imposing the CCA-loss, we enable the neural network to spontaneously adjust important information into the early stage of the autoregressive entropy model. Furthermore, as transformer technology develops remarkably, variants of which have been adopted by many state-of-the-art (SOTA) LIC techniques. The existing computing devices have not adapted the calculation of the attention mechanism well, which leads to a burden on computation quantity and inference latency. To overcome it, we establish a convolutional neural network (CNN) image compression model and adopt the unevenly channel-wise grouped strategy for high efficiency. Ultimately, the proposed CNN-based LIC network trained with our Causal Context Adjustment loss attains a great trade-off between inference latency and rate-distortion performance.
- Abstract(参考訳): 近年,学習画像圧縮(lic)技術は,特にRD性能の点で従来の手法を上回りつつある。
現在学習されているほとんどの技術は、自己回帰エントロピーモデルを備えたVAEベースであり、デコードされた因果コンテキストを利用してRD性能を向上する。
しかし、既存の手法は固定された手作りの因果関係に大きく依存している。
自己回帰エントロピーモデルに対して、より効果的な因果関係の利点を生み出すために、オートエンコーダをどのように誘導するかは、調査する価値がある。
本稿では,提案した因果文脈調整損失(Causal Context Adjustment Los, CCA-loss)を用いて因果文脈を明示的に調整する方法を初めて検討する。
CCA-ロスを付与することにより、ニューラルネットワークは自己回帰エントロピーモデルの初期段階において、重要な情報を自然に調整することができる。
さらに、トランス技術が著しく発展するにつれて、多くのSOTA(State-of-the-art lic)技術が採用されている。
既存の計算装置は、アテンション機構の計算にうまく適応していないため、計算量や推論遅延に負担がかかる。
そこで我々は,畳み込みニューラルネットワーク (CNN) 画像圧縮モデルを構築し,その不均一なチャネルワイド戦略を高効率に活用する。
最終的に、私たちのCausal Context Adjustment損失でトレーニングされたCNNベースのlicネットワークは、推論レイテンシとレート歪み性能の間に大きなトレードオフをもたらす。
関連論文リスト
- Generalized Nested Latent Variable Models for Lossy Coding applied to Wind Turbine Scenarios [14.48369551534582]
学習に基づくアプローチは、圧縮率と再構成された画質の妥協を最小化する。
成功したテクニックは、2レベルネストされた潜伏変数モデル内で機能するディープハイパープライアの導入である。
本稿では,マルコフ連鎖構造を持つ一般化Lレベルネスト生成モデルを設計することによって,この概念を拡張した。
論文 参考訳(メタデータ) (2024-06-10T11:00:26Z) - Joint Hierarchical Priors and Adaptive Spatial Resolution for Efficient
Neural Image Compression [11.25130799452367]
ニューラル画像圧縮(NIC)のための絶対画像圧縮変換器(ICT)を提案する。
ICTは、潜在表現からグローバルコンテキストとローカルコンテキストの両方をキャプチャし、量子化された潜在表現の分布をパラメータ化する。
我々のフレームワークは、多目的ビデオ符号化(VVC)参照符号化(VTM-18.0)とニューラルスウィンT-ChARMに対する符号化効率とデコーダ複雑性のトレードオフを大幅に改善する。
論文 参考訳(メタデータ) (2023-07-05T13:17:14Z) - Towards a Better Theoretical Understanding of Independent Subnetwork Training [56.24689348875711]
独立サブネットワークトレーニング(IST)の理論的考察
ISTは、上記の問題を解決するための、最近提案され、非常に効果的である。
圧縮通信を用いた分散手法など,ISTと代替手法の基本的な違いを同定する。
論文 参考訳(メタデータ) (2023-06-28T18:14:22Z) - Efficient Contextformer: Spatio-Channel Window Attention for Fast
Context Modeling in Learned Image Compression [1.9249287163937978]
学習画像に対する変換器に基づく自己回帰的文脈モデルである、効率的なコンテキストフォーマ(eContextformer)を導入する。
並列コンテキストモデリングのためのパッチワイド、チェッカー、チャンネルワイドのグルーピングテクニックを融合する。
モデル複雑性が145倍、デコード速度が210Cx向上し、Kodak、CLI、Tecnickデータセット上での平均ビット節約を実現している。
論文 参考訳(メタデータ) (2023-06-25T16:29:51Z) - Exploiting Diffusion Prior for Real-World Image Super-Resolution [75.5898357277047]
本稿では,事前学習したテキスト・画像拡散モデルにカプセル化された事前知識を視覚的超解像に活用するための新しいアプローチを提案する。
時間認識エンコーダを用いることで、事前学習した合成モデルを変更することなく、有望な復元結果が得られる。
論文 参考訳(メタデータ) (2023-05-11T17:55:25Z) - Implicit Neural Representations for Image Compression [103.78615661013623]
Inlicit Neural Representations (INRs) は、様々なデータ型の新規かつ効果的な表現として注目されている。
量子化、量子化を考慮した再学習、エントロピー符号化を含むINRに基づく最初の包括的圧縮パイプラインを提案する。
我々は、INRによるソース圧縮に対する我々のアプローチが、同様の以前の作業よりも大幅に優れていることに気付きました。
論文 参考訳(メタデータ) (2021-12-08T13:02:53Z) - Joint Global and Local Hierarchical Priors for Learned Image Compression [30.44884350320053]
近年,従来の手書き画像コーデックと比較して,学習画像圧縮法の性能が向上している。
本稿では,ローカル情報とグローバル情報の両方をコンテンツに依存した方法で活用する,情報変換(Information Transformer, Informer)と呼ばれる新しいエントロピーモデルを提案する。
実験により,Informer はKodak および Tecnick データセットの最先端手法よりも速度歪み性能が向上することを示した。
論文 参考訳(メタデータ) (2021-12-08T06:17:37Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
本稿では,これらの用語を暗黙的にモデル化する識別的縮小関数を学習することで,効果的に非盲検デコンボリューション手法を提案する。
実験結果から,提案手法は最先端の手法に対して,効率と精度の点で好適に動作することがわかった。
論文 参考訳(メタデータ) (2021-11-27T12:12:57Z) - On Effects of Compression with Hyperdimensional Computing in Distributed
Randomized Neural Networks [6.25118865553438]
ランダム化ニューラルネットワークと超次元計算に基づく分散分類モデルを提案する。
本研究では,従来の圧縮アルゴリズムや次元減少,量子化技術と比較し,より柔軟な圧縮手法を提案する。
論文 参考訳(メタデータ) (2021-06-17T22:02:40Z) - Learning Context-Based Non-local Entropy Modeling for Image Compression [140.64888994506313]
本稿では,文脈内でのグローバルな類似性を利用して,文脈モデリングのための非局所的操作を提案する。
エントロピーモデルはさらに、結合速度歪み最適化における速度損失として採用されている。
低歪みモデルのトレーニングに変換の幅が不可欠であることを考えると、最終的に変換のU-Netブロックを生成して、管理可能なメモリ消費と時間複雑性で幅を拡大する。
論文 参考訳(メタデータ) (2020-05-10T13:28:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。