Application of attention-based Siamese composite neural network in medical image recognition
- URL: http://arxiv.org/abs/2304.09783v3
- Date: Fri, 15 Mar 2024 04:13:51 GMT
- Title: Application of attention-based Siamese composite neural network in medical image recognition
- Authors: Zihao Huang, Yue Wang, Weixing Xin, Xingtong Lin, Huizhen Li, Haowen Chen, Yizhen Lao, Xia Chen,
- Abstract summary: This study has established a recognition model based on attention and Siamese neural network.
The Attention-Based neural network is used as the main network to improve the classification effect.
The results show that the less the number of image samples are, the more obvious the advantage shows.
- Score: 6.370635116365471
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Medical image recognition often faces the problem of insufficient data in practical applications. Image recognition and processing under few-shot conditions will produce overfitting, low recognition accuracy, low reliability and insufficient robustness. It is often the case that the difference of characteristics is subtle, and the recognition is affected by perspectives, background, occlusion and other factors, which increases the difficulty of recognition. Furthermore, in fine-grained images, the few-shot problem leads to insufficient useful feature information in the images. Considering the characteristics of few-shot and fine-grained image recognition, this study has established a recognition model based on attention and Siamese neural network. Aiming at the problem of few-shot samples, a Siamese neural network suitable for classification model is proposed. The Attention-Based neural network is used as the main network to improve the classification effect. Covid- 19 lung samples have been selected for testing the model. The results show that the less the number of image samples are, the more obvious the advantage shows than the ordinary neural network.
Related papers
- Stain Normalized Breast Histopathology Image Recognition using
Convolutional Neural Networks for Cancer Detection [9.826027427965354]
Recent advances have shown that the convolutional Neural Network (CNN) architectures can be used to design a Computer Aided Diagnostic (CAD) System for breast cancer detection.
We consider some contemporary CNN models for binary classification of breast histopathology images.
We have validated the trained CNN networks on a publicly available BreaKHis dataset, for 200x and 400x magnified histopathology images.
arXiv Detail & Related papers (2022-01-04T03:09:40Z) - Influence of image noise on crack detection performance of deep
convolutional neural networks [0.0]
Much research has been conducted on classifying cracks from image data using deep convolutional neural networks.
This paper will investigate the influence of image noise on network accuracy.
AlexNet was selected as the most efficient model based on the proposed index.
arXiv Detail & Related papers (2021-11-03T09:08:54Z) - Sharp-GAN: Sharpness Loss Regularized GAN for Histopathology Image
Synthesis [65.47507533905188]
Conditional generative adversarial networks have been applied to generate synthetic histopathology images.
We propose a sharpness loss regularized generative adversarial network to synthesize realistic histopathology images.
arXiv Detail & Related papers (2021-10-27T18:54:25Z) - Real-Time Glaucoma Detection from Digital Fundus Images using Self-ONNs [22.863901758361692]
Glaucoma leads to permanent vision disability by damaging the optical nerve that transmits visual images to the brain.
Various deep learning models have been applied for detecting glaucoma from digital fundus images, due to the scarcity of labeled data.
In this study, compact Self-Organized Operational Neural Networks (Self- ONNs) are proposed for early detection of glaucoma in fundus images.
arXiv Detail & Related papers (2021-09-28T10:27:01Z) - Out-of-Distribution Detection for Dermoscopic Image Classification [0.0]
We develop a novel yet simple method to train neural networks, which enables them to classify in-distribution dermoscopic skin disease images.
We show that our BinaryHeads model not only does not hurt classification balanced accuracy when the data is imbalanced, but also consistently improves the balanced accuracy.
arXiv Detail & Related papers (2021-04-15T23:34:53Z) - Generative Adversarial U-Net for Domain-free Medical Image Augmentation [49.72048151146307]
The shortage of annotated medical images is one of the biggest challenges in the field of medical image computing.
In this paper, we develop a novel generative method named generative adversarial U-Net.
Our newly designed model is domain-free and generalizable to various medical images.
arXiv Detail & Related papers (2021-01-12T23:02:26Z) - Domain Generalization for Medical Imaging Classification with
Linear-Dependency Regularization [59.5104563755095]
We introduce a simple but effective approach to improve the generalization capability of deep neural networks in the field of medical imaging classification.
Motivated by the observation that the domain variability of the medical images is to some extent compact, we propose to learn a representative feature space through variational encoding.
arXiv Detail & Related papers (2020-09-27T12:30:30Z) - Multi-label Thoracic Disease Image Classification with Cross-Attention
Networks [65.37531731899837]
We propose a novel scheme of Cross-Attention Networks (CAN) for automated thoracic disease classification from chest x-ray images.
We also design a new loss function that beyond cross-entropy loss to help cross-attention process and is able to overcome the imbalance between classes and easy-dominated samples within each class.
arXiv Detail & Related papers (2020-07-21T14:37:00Z) - Self-Loop Uncertainty: A Novel Pseudo-Label for Semi-Supervised Medical
Image Segmentation [30.644905857223474]
We propose a semi-supervised approach to train neural networks with limited labeled data and a large quantity of unlabeled images for medical image segmentation.
A novel pseudo-label (namely self-loop uncertainty) is adopted as the ground-truth for the unlabeled images to augment the training set and boost the segmentation accuracy.
arXiv Detail & Related papers (2020-07-20T02:52:07Z) - Modeling and Enhancing Low-quality Retinal Fundus Images [167.02325845822276]
Low-quality fundus images increase uncertainty in clinical observation and lead to the risk of misdiagnosis.
We propose a clinically oriented fundus enhancement network (cofe-Net) to suppress global degradation factors.
Experiments on both synthetic and real images demonstrate that our algorithm effectively corrects low-quality fundus images without losing retinal details.
arXiv Detail & Related papers (2020-05-12T08:01:16Z) - ElixirNet: Relation-aware Network Architecture Adaptation for Medical
Lesion Detection [90.13718478362337]
We introduce a novel ElixirNet that includes three components: 1) TruncatedRPN balances positive and negative data for false positive reduction; 2) Auto-lesion Block is automatically customized for medical images to incorporate relation-aware operations among region proposals; and 3) Relation transfer module incorporates the semantic relationship.
Experiments on DeepLesion and Kits19 prove the effectiveness of ElixirNet, achieving improvement of both sensitivity and precision over FPN with fewer parameters.
arXiv Detail & Related papers (2020-03-03T05:29:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.