論文の概要: Advances on Concept Drift Detection in Regression Tasks using Social
Networks Theory
- arxiv url: http://arxiv.org/abs/2304.09788v1
- Date: Wed, 19 Apr 2023 16:13:28 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-20 13:34:24.553939
- Title: Advances on Concept Drift Detection in Regression Tasks using Social
Networks Theory
- Title(参考訳): ソーシャルネットワーク理論を用いた回帰課題における概念ドリフト検出の進歩
- Authors: Jean Paul Barddal and Heitor Murilo Gomes and Fabr\'icio Enembreck
- Abstract要約: スケールフリーネットワークレグレシタ (SFNR) は、ソーシャルネットワーク理論を用いた動的アンサンブルに基づく回帰手法である。
概念のドリフトを検出するため、SFNRはAdaptive Window (ADWIN)アルゴリズムを使用している。
その結果,特にコンセプトドリフト時の精度が向上した。
- 参考スコア(独自算出の注目度): 5.25961378238154
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Mining data streams is one of the main studies in machine learning area due
to its application in many knowledge areas. One of the major challenges on
mining data streams is concept drift, which requires the learner to discard the
current concept and adapt to a new one. Ensemble-based drift detection
algorithms have been used successfully to the classification task but usually
maintain a fixed size ensemble of learners running the risk of needlessly
spending processing time and memory. In this paper we present improvements to
the Scale-free Network Regressor (SFNR), a dynamic ensemble-based method for
regression that employs social networks theory. In order to detect concept
drifts SFNR uses the Adaptive Window (ADWIN) algorithm. Results show
improvements in accuracy, especially in concept drift situations and better
performance compared to other state-of-the-art algorithms in both real and
synthetic data.
- Abstract(参考訳): データストリームのマイニングは、多くの知識分野に適用されているため、機械学習分野における主要な研究の1つです。
データストリームのマイニングにおいて大きな課題の1つはコンセプトドリフトであり、これは学習者が現在の概念を捨てて新しい概念に適応する必要がある。
アンサンブルに基づくドリフト検出アルゴリズムは、分類作業に成功しているが、通常、処理時間とメモリに不必要に費やすリスクを負う学習者の固定サイズアンサンブルを維持する。
本稿では,ネットワーク理論を用いた動的アンサンブルに基づく回帰手法であるスケールフリーネットワーク回帰器(SFNR)の改良について述べる。
コンセプトを検出するために、SFNRはAdaptive Window (ADWIN)アルゴリズムを使用している。
その結果、特にコンセプトドリフトの状況では精度が向上し、実データと合成データの両方における他の最先端アルゴリズムと比較して性能が向上した。
関連論文リスト
- A Unified Framework for Neural Computation and Learning Over Time [56.44910327178975]
Hamiltonian Learningはニューラルネットワークを"時間とともに"学習するための新しい統合フレームワーク
i)外部ソフトウェアソルバを必要とせずに統合できる、(ii)フィードフォワードおよびリカレントネットワークにおける勾配に基づく学習の概念を一般化する、(iii)新しい視点で開放する、という微分方程式に基づいている。
論文 参考訳(メタデータ) (2024-09-18T14:57:13Z) - Research on geometric figure classification algorithm based on Deep Learning [13.801161624212437]
提案した幾何パターン認識アルゴリズムはトレーニングデータセットにおいて高速である。
認識過程において、クロスエントロピー損失関数を用いてモデルの一般化を改善する。
論文 参考訳(メタデータ) (2024-04-25T12:18:04Z) - Liquid Neural Network-based Adaptive Learning vs. Incremental Learning for Link Load Prediction amid Concept Drift due to Network Failures [37.66676003679306]
概念の漂流に適応することは、機械学習において難しい課題である。
通信ネットワークでは、障害イベントの後に交通予報を行う際にこのような問題が生じる。
本稿では,適応学習アルゴリズム,すなわち,データパターンの急激な変化を,再学習を必要とせずに自己適応できる手法を提案する。
論文 参考訳(メタデータ) (2024-04-08T08:47:46Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
ニューラルネットワークの予測は、アウト・オブ・ディストリビューション(OOD)入力に直面した場合、予測不可能で過信される傾向がある。
我々は、入力データがOODになるにつれて、ニューラルネットワークの予測が一定値に向かう傾向があることを観察する。
我々は、OOD入力の存在下でリスクに敏感な意思決定を可能にするために、私たちの洞察を実際に活用する方法を示します。
論文 参考訳(メタデータ) (2023-10-02T03:25:32Z) - The Cascaded Forward Algorithm for Neural Network Training [61.06444586991505]
本稿では,ニューラルネットワークのための新しい学習フレームワークであるCascaded Forward(CaFo)アルゴリズムを提案する。
FFとは異なり、我々のフレームワークは各カスケードブロックのラベル分布を直接出力する。
我々のフレームワークでは、各ブロックは独立して訓練できるので、並列加速度システムに容易に展開できる。
論文 参考訳(メタデータ) (2023-03-17T02:01:11Z) - Autoregressive based Drift Detection Method [0.0]
我々はADDMと呼ばれる自己回帰モデルに基づく新しい概念ドリフト検出手法を提案する。
以上の結果から,新しいドリフト検出法は最先端ドリフト検出法よりも優れていることがわかった。
論文 参考訳(メタデータ) (2022-03-09T14:36:16Z) - Convolutional generative adversarial imputation networks for
spatio-temporal missing data in storm surge simulations [86.5302150777089]
GAN(Generative Adversarial Imputation Nets)とGANベースの技術は、教師なし機械学習手法として注目されている。
提案手法を Con Conval Generative Adversarial Imputation Nets (Conv-GAIN) と呼ぶ。
論文 参考訳(メタデータ) (2021-11-03T03:50:48Z) - Detecting Concept Drift With Neural Network Model Uncertainty [0.0]
不確実ドリフト検出(UDD)は、真のラベルにアクセスすることなくドリフトを検出することができる。
入力データに基づくドリフト検出とは対照的に,現在の入力データが予測モデルの特性に与える影響を考察する。
UDDは2つの合成および10の実世界のデータセットにおいて、回帰処理と分類処理の両方において、他の最先端戦略よりも優れていることを示す。
論文 参考訳(メタデータ) (2021-07-05T08:56:36Z) - Reinforcement Learning for Datacenter Congestion Control [50.225885814524304]
渋滞制御アルゴリズムの成功は、レイテンシとネットワーク全体のスループットを劇的に改善する。
今日まで、このような学習ベースのアルゴリズムはこの領域で実用的な可能性を示さなかった。
実世界のデータセンターネットワークの様々な構成に一般化することを目的としたRLに基づくアルゴリズムを考案する。
本稿では,この手法が他のRL手法よりも優れており,トレーニング中に見られなかったシナリオに一般化可能であることを示す。
論文 参考訳(メタデータ) (2021-02-18T13:49:28Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
位相検索は現代の計算イメージングシステムにおいて重要な要素である。
近年のディープラーニングの進歩は、堅牢で高速なPRの新たな可能性を開いた。
我々は、既存の制限を克服するために、深層展開のための新しいフレームワークを開発する。
論文 参考訳(メタデータ) (2021-01-12T08:36:23Z) - DriftSurf: A Risk-competitive Learning Algorithm under Concept Drift [12.579800289829963]
ストリーミングデータから学ぶとき、概念ドリフト(concept drift)とも呼ばれるデータ分散の変化は、以前に学習したモデルが不正確なものになる可能性がある。
本研究では,ドリフト検出をより広範な安定状態/反応性状態プロセスに組み込むことにより,従来のドリフト検出に基づく手法を拡張する適応学習アルゴリズムを提案する。
このアルゴリズムはベースラーナーにおいて汎用的であり、様々な教師付き学習問題に適用できる。
論文 参考訳(メタデータ) (2020-03-13T23:25:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。