Fast pseudorandom quantum state generators via inflationary quantum gates
- URL: http://arxiv.org/abs/2304.09885v3
- Date: Sun, 21 Apr 2024 16:53:16 GMT
- Title: Fast pseudorandom quantum state generators via inflationary quantum gates
- Authors: Claudio Chamon, Eduardo R. Mucciolo, Andrei E. Ruckenstein, Zhi-Cheng Yang,
- Abstract summary: We propose a mechanism for reaching pseudorandom quantum states, computationally indistinguishable from Haar random, with shallow log-n depth quantum circuits.
We prove that IQ-gates cannot be implemented with 2-qubit gates, but can be realized either as a subset of 2-qudit-gates in $U(d2)$ with $dge 3$ and $d$ prime, or as special 3-qubit gates.
- Score: 3.5072186061740904
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a mechanism for reaching pseudorandom quantum states, computationally indistinguishable from Haar random, with shallow log-n depth quantum circuits, where n is the number of qudits. We argue that $\log n$ depth 2-qubit-gate-based generic random quantum circuits that are claimed to provide a lower bound on the speed of information scrambling, cannot produce computationally pseudorandom quantum states. This conclusion is connected with the presence of polynomial (in $n$) tails in the stay probability of short Pauli strings that survive evolution through such shallow circuits. We show, however, that stay-probability-tails can be eliminated and pseudorandom quantum states can be accomplished with shallow $\log n$ depth circuits built from a special universal family of `inflationary' quantum (IQ) gates. We prove that IQ-gates cannot be implemented with 2-qubit gates, but can be realized either as a subset of 2-qudit-gates in $U(d^2)$ with $d\ge 3$ and $d$ prime, or as special 3-qubit gates.
Related papers
- On verifiable quantum advantage with peaked circuit sampling [9.551919087634522]
We show that getting $1/textpoly(n)$ peakedness from such circuits requires $tau_p = Omega(tau_r/n)0.19)$ with overwhelming probability.
We also give numerical evidence that nontrivial peakedness is possible in this model.
arXiv Detail & Related papers (2024-04-22T18:00:06Z) - QuantumSEA: In-Time Sparse Exploration for Noise Adaptive Quantum
Circuits [82.50620782471485]
QuantumSEA is an in-time sparse exploration for noise-adaptive quantum circuits.
It aims to achieve two key objectives: (1) implicit circuits capacity during training and (2) noise robustness.
Our method establishes state-of-the-art results with only half the number of quantum gates and 2x time saving of circuit executions.
arXiv Detail & Related papers (2024-01-10T22:33:00Z) - A vertical gate-defined double quantum dot in a strained germanium
double quantum well [48.7576911714538]
Gate-defined quantum dots in silicon-germanium heterostructures have become a compelling platform for quantum computation and simulation.
We demonstrate the operation of a gate-defined vertical double quantum dot in a strained germanium double quantum well.
We discuss challenges and opportunities and outline potential applications in quantum computing and quantum simulation.
arXiv Detail & Related papers (2023-05-23T13:42:36Z) - Quantum process tomography of continuous-variable gates using coherent
states [49.299443295581064]
We demonstrate the use of coherent-state quantum process tomography (csQPT) for a bosonic-mode superconducting circuit.
We show results for this method by characterizing a logical quantum gate constructed using displacement and SNAP operations on an encoded qubit.
arXiv Detail & Related papers (2023-03-02T18:08:08Z) - Random quantum circuits are approximate unitary $t$-designs in depth
$O\left(nt^{5+o(1)}\right)$ [0.0]
We show that random quantum circuits generate approximate unitary $t$-designs in depth $O(nt5+o(1))$.
Our techniques involve Gao's quantum union bound and the unreasonable effectiveness of the Clifford group.
arXiv Detail & Related papers (2022-03-30T18:02:08Z) - Efficient Bipartite Entanglement Detection Scheme with a Quantum
Adversarial Solver [89.80359585967642]
Proposal reformulates the bipartite entanglement detection as a two-player zero-sum game completed by parameterized quantum circuits.
We experimentally implement our protocol on a linear optical network and exhibit its effectiveness to accomplish the bipartite entanglement detection for 5-qubit quantum pure states and 2-qubit quantum mixed states.
arXiv Detail & Related papers (2022-03-15T09:46:45Z) - Sample Complexity of Learning Quantum Circuits [4.329298109272386]
We prove that physical quantum circuits are PAC learnable on a quantum computer via empirical risk minimization.
Our results provide a valuable guide for quantum machine learning in both theory and experiment.
arXiv Detail & Related papers (2021-07-19T18:00:04Z) - Depth-efficient proofs of quantumness [77.34726150561087]
A proof of quantumness is a type of challenge-response protocol in which a classical verifier can efficiently certify quantum advantage of an untrusted prover.
In this paper, we give two proof of quantumness constructions in which the prover need only perform constant-depth quantum circuits.
arXiv Detail & Related papers (2021-07-05T17:45:41Z) - Improved spectral gaps for random quantum circuits: large local
dimensions and all-to-all interactions [0.0]
We show that $1D$ random quantum circuits have a spectral gap scaling as $Omega(n-1)$, provided that $t$ is small compared to the local dimension: $t2leq O(q)$.
Our second result is an unconditional spectral gap bounded below by $Omega(n-1log-1(n) t-alpha(q))$ for random quantum circuits with all-to-all interactions.
arXiv Detail & Related papers (2020-12-09T19:00:50Z) - Depth-2 QAC circuits cannot simulate quantum parity [0.0]
We show that the quantum parity gate on $n > 3$ qubits cannot be cleanly simulated by a quantum circuit.
This is the best known and first nontrivial separation between the parity gate and circuits of this form.
arXiv Detail & Related papers (2020-05-25T15:32:16Z) - Quantum Gram-Schmidt Processes and Their Application to Efficient State
Read-out for Quantum Algorithms [87.04438831673063]
We present an efficient read-out protocol that yields the classical vector form of the generated state.
Our protocol suits the case that the output state lies in the row space of the input matrix.
One of our technical tools is an efficient quantum algorithm for performing the Gram-Schmidt orthonormal procedure.
arXiv Detail & Related papers (2020-04-14T11:05:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.