論文の概要: Radar de Parit\'e: An NLP system to measure gender representation in
French news stories
- arxiv url: http://arxiv.org/abs/2304.09982v1
- Date: Wed, 19 Apr 2023 21:33:59 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-21 15:07:20.285007
- Title: Radar de Parit\'e: An NLP system to measure gender representation in
French news stories
- Title(参考訳): Radar de Parit\'e:フランスのニュース記事におけるジェンダー表現を測定するNLPシステム
- Authors: Valentin-Gabriel Soumah, Prashanth Rao, Philipp Eibl, Maite Taboada
- Abstract要約: Radar de Parit'eは、6つのカナダのフランス語メディアで毎日引用されている男女の割合を測定している。
システムのアーキテクチャを概説し、フランス固有の問題に対処するために克服した課題を詳述する。
- 参考スコア(独自算出の注目度): 0.05735035463793007
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present the Radar de Parit\'e, an automated Natural Language Processing
(NLP) system that measures the proportion of women and men quoted daily in six
Canadian French-language media outlets. We outline the system's architecture
and detail the challenges we overcame to address French-specific issues, in
particular regarding coreference resolution, a new contribution to the NLP
literature on French. We also showcase statistics covering over one year's
worth of data (282,512 news articles). Our results highlight the
underrepresentation of women in news stories, while also illustrating the
application of modern NLP methods to measure gender representation and address
societal issues.
- Abstract(参考訳): カナダの6つのフランス語メディアで毎日引用されている女性と男性の割合を測定する,NLP(Automatic Natural Language Processing)システムであるRadar de Parit\'eを紹介する。
システムのアーキテクチャを概説し、フランス固有の問題、特にフランス語のnlp文学への新たな貢献であるコリファレンス解決に関する課題を詳述する。
また、1年分のデータ(282,512のニュース記事)に関する統計も紹介する。
本研究は,ジェンダー表現の計測や社会問題への対処に近代的NLP手法を応用した上で,ニュース記事における女性の表現不足を強調した。
関連論文リスト
- GenderCARE: A Comprehensive Framework for Assessing and Reducing Gender Bias in Large Language Models [73.23743278545321]
大規模言語モデル(LLM)は、自然言語生成において顕著な能力を示してきたが、社会的バイアスを増大させることも観察されている。
GenderCAREは、革新的な基準、バイアス評価、リダクションテクニック、評価メトリクスを含む包括的なフレームワークである。
論文 参考訳(メタデータ) (2024-08-22T15:35:46Z) - Automatic Classification of News Subjects in Broadcast News: Application to a Gender Bias Representation Analysis [1.4100823284870105]
本稿では,フランステレビやラジオニュースで取り上げられる話題におけるジェンダー分布の偏りを列挙する計算フレームワークを提案する。
我々は、2023年に21のフランス語チャンネルで放送された11.7k時間のデータセットを転写した。
スポーツ,政治,紛争などの主題において,女性が顕著に表現されていないことを示す。
論文 参考訳(メタデータ) (2024-07-19T10:15:45Z) - Towards Systematic Monolingual NLP Surveys: GenA of Greek NLP [2.3499129784547663]
本研究は, 体系的かつ総合的な単言語NLPサーベイを作成する手法を導入することで, ギャップを埋めるものである。
構造化された検索プロトコルによって特徴づけられ、出版物を選定し、NLPタスクの分類によってそれらを整理することができる。
本手法の適用により,2012年から2022年にかけて,ギリシャNLPの体系的文献レビューを行った。
論文 参考訳(メタデータ) (2024-07-13T12:01:52Z) - Leveraging Large Language Models to Measure Gender Representation Bias in Gendered Language Corpora [9.959039325564744]
テキストコーパスにおけるジェンダーバイアスは、社会的不平等の永続性と増幅につながる可能性がある。
テキストコーパスにおけるジェンダー表現バイアスを計測する既存の手法は、主に英語で提案されている。
本稿では,スペインのコーパスにおけるジェンダー表現バイアスを定量的に測定する手法を提案する。
論文 参考訳(メタデータ) (2024-06-19T16:30:58Z) - Natural Language Processing for Dialects of a Language: A Survey [56.93337350526933]
最先端自然言語処理(NLP)モデルは、大規模なトレーニングコーパスでトレーニングされ、評価データセットで最上位のパフォーマンスを報告します。
この調査は、これらのデータセットの重要な属性である言語の方言を掘り下げる。
方言データセットに対するNLPモデルの性能劣化と言語技術のエクイティへのその影響を動機として,我々はデータセットやアプローチの観点から,方言に対するNLPの過去の研究を調査した。
論文 参考訳(メタデータ) (2024-01-11T03:04:38Z) - The Gender-GAP Pipeline: A Gender-Aware Polyglot Pipeline for Gender
Characterisation in 55 Languages [51.2321117760104]
本稿では,55言語を対象とした大規模データセットにおけるジェンダー表現を特徴付ける自動パイプラインであるGender-GAP Pipelineについて述べる。
このパイプラインは、性別付き人称名詞の多言語語彙を用いて、テキスト中の性別表現を定量化する。
本稿では、WMTのトレーニングデータとNewsタスクの開発データにジェンダー表現を報告し、現在のデータが男性表現にスキューされていることを確認する。
論文 参考訳(メタデータ) (2023-08-31T17:20:50Z) - VisoGender: A dataset for benchmarking gender bias in image-text pronoun
resolution [80.57383975987676]
VisoGenderは、視覚言語モデルで性別バイアスをベンチマークするための新しいデータセットである。
We focus to occupation-related biases in a hegemonic system of binary gender, inspired by Winograd and Winogender schemas。
我々は、最先端の視覚言語モデルをいくつかベンチマークし、それらが複雑な場面における二項性解消のバイアスを示すことを発見した。
論文 参考訳(メタデータ) (2023-06-21T17:59:51Z) - Auditing Gender Presentation Differences in Text-to-Image Models [54.16959473093973]
我々は、テキスト・ツー・イメージ・モデルにおいて、ジェンダーがどのように異なる形で提示されるかを研究する。
入力テキスト中の性指標を探索することにより、プレゼンテーション中心属性の周波数差を定量化する。
このような違いを推定する自動手法を提案する。
論文 参考訳(メタデータ) (2023-02-07T18:52:22Z) - One Country, 700+ Languages: NLP Challenges for Underrepresented
Languages and Dialects in Indonesia [60.87739250251769]
インドネシアの700以上の言語を対象としたNLP研究の現状について概説する。
インドネシアのNLPにおける課題と、現在のNLPシステムの性能にどのように影響するかを強調します。
論文 参考訳(メタデータ) (2022-03-24T22:07:22Z) - GenderedNews: Une approche computationnelle des \'ecarts de
repr\'esentation des genres dans la presse fran\c{c}aise [0.0]
GenderedNews (urlhttps://gendered-news.imag.fr)は、フランスのオンラインメディアで毎週男女不均衡を計測するオンラインダッシュボードである。
メディアにおけるジェンダーの不平等の定量化には自然言語処理(NLP)手法を用いる。
毎日収集されるデータ(フランスのオンラインニュースメディアの7つの主要タイトル)と、メトリクスの背後にある方法論について説明する。
論文 参考訳(メタデータ) (2022-02-11T15:16:49Z) - Generating Gender Augmented Data for NLP [3.5557219875516655]
ジェンダーバイアスは、NLPベースのアプリケーション、特に性差のある言語で頻繁に発生する。
本稿では,会話文の自動書き直し手法を提案する。
提案するアプローチは、あるジェンダーから別のジェンダーへの"翻訳"を訓練されたニューラルマシン翻訳(NMT)システムに基づいている。
論文 参考訳(メタデータ) (2021-07-13T11:13:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。