論文の概要: Identification and multiply robust estimation in causal mediation analysis across principal strata
- arxiv url: http://arxiv.org/abs/2304.10025v4
- Date: Thu, 12 Sep 2024 03:17:18 GMT
- ステータス: 処理完了
- システム内更新日: 2024-09-13 22:51:28.621108
- Title: Identification and multiply robust estimation in causal mediation analysis across principal strata
- Title(参考訳): 主層横断の因果媒介分析における同定と多重ロバスト推定
- Authors: Chao Cheng, Fan Li,
- Abstract要約: 治療後イベントの存在下での因果仲裁の評価について検討する。
本研究では,各媒介推定値に対する効率的な影響関数を導出する。
- 参考スコア(独自算出の注目度): 7.801213477601286
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: We consider assessing causal mediation in the presence of a post-treatment event (examples include noncompliance, a clinical event, or death). We identify natural mediation effects for the entire study population and for each principal stratum characterized by the joint potential values of the post-treatment event. We derive the efficient influence function for each mediation estimand, which motivates a set of multiply robust estimators for inference. The multiply robust estimators are consistent under four types of misspecifications and are efficient when all nuisance models are correctly specified. We also develop a nonparametric efficient estimator that leverages data-adaptive machine learners to achieve efficient inference and discuss sensitivity methods to address key identification assumptions. We illustrate our methods via simulations and two real data examples.
- Abstract(参考訳): 治療後イベント(非コンプライアンス,臨床イベント,死亡例)の存在下での因果仲裁の評価を検討する。
本研究は, 研究全体の自然媒介効果と, 治療後事象の有意な有意差を特徴とする各主要層について検討した。
本研究では,各媒介推定値に対する効率的な影響関数を導出する。
多重ロバストな推定器は4種類の誤特定の下で一貫し、すべてのニュアンスモデルが正しく特定されたときに効率的である。
また,データ適応型機械学習を応用した非パラメトリックな効率的な推定器を開発し,鍵同定の仮定に対処するための感度手法について議論する。
シミュレーションと実データ例を2つ紹介する。
関連論文リスト
- Doubly Robust Estimation of Direct and Indirect Quantile Treatment
Effects with Machine Learning [0.0]
本稿では, 直接的および間接的量子的処理効果の機械学習推定器を提案する。
提案手法は,確率結果の累積分布関数の効率的なスコア関数に基づく。
また,統計的推測のための乗算器ブートストラップを提案し,乗算器の有効性を示す。
論文 参考訳(メタデータ) (2023-07-03T14:27:15Z) - B-Learner: Quasi-Oracle Bounds on Heterogeneous Causal Effects Under
Hidden Confounding [51.74479522965712]
本稿では,B-Learnerと呼ばれるメタラーナーを提案する。
我々は、その推定が有効で、鋭く、効率的であることを証明し、既存の方法よりも一般的な条件下で構成推定器に対して準オーラル特性を持つことを示した。
論文 参考訳(メタデータ) (2023-04-20T18:07:19Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
実世界の機械学習デプロイメントは、ソース(トレーニング)とターゲット(テスト)ディストリビューションのミスマッチによって特徴づけられる。
本研究では,ラベル付きソースデータとラベルなしターゲットデータのみを用いて,対象領域の精度を予測する手法を検討する。
本稿では,モデルの信頼度をしきい値として学習し,精度をラベルなし例のごく一部として予測する実践的手法である平均閾値保持信頼度(ATC)を提案する。
論文 参考訳(メタデータ) (2022-01-11T23:01:12Z) - Scalable Intervention Target Estimation in Linear Models [52.60799340056917]
因果構造学習への現在のアプローチは、既知の介入目標を扱うか、仮説テストを使用して未知の介入目標を発見する。
本稿では、全ての介入対象を一貫して識別するスケーラブルで効率的なアルゴリズムを提案する。
提案アルゴリズムは、与えられた観測マルコフ同値クラスを介入マルコフ同値クラスに更新することも可能である。
論文 参考訳(メタデータ) (2021-11-15T03:16:56Z) - Confounding Feature Acquisition for Causal Effect Estimation [6.174721516017138]
我々は,この課題を因果推論のための特徴獲得の問題として捉えている。
我々のゴールは、効率的な平均治療効果の推定につながるサンプルにおいて、行方不明の共同創業者の固定的で既知のサブセットの取得値を優先順位付けすることです。
論文 参考訳(メタデータ) (2020-11-17T16:28:43Z) - Robust Bayesian Inference for Discrete Outcomes with the Total Variation
Distance [5.139874302398955]
離散的に評価された結果のモデルは、データがゼロインフレーション、過分散または汚染を示す場合、容易に誤特定される。
ここでは、Ttal Variation Distance (TVD) を用いた頑健な相違に基づくベイズ的アプローチを提案する。
我々は、我々のアプローチが堅牢で、シミュレーションおよび実世界のデータの範囲で予測性能を著しく改善していることを実証的に実証した。
論文 参考訳(メタデータ) (2020-10-26T09:53:06Z) - Double Robust Representation Learning for Counterfactual Prediction [68.78210173955001]
そこで本稿では, 対実予測のための2次ロバスト表現を学習するための, スケーラブルな新しい手法を提案する。
我々は、個々の治療効果と平均的な治療効果の両方に対して、堅牢で効率的な対実的予測を行う。
このアルゴリズムは,実世界の最先端技術と合成データとの競合性能を示す。
論文 参考訳(メタデータ) (2020-10-15T16:39:26Z) - Causal Feature Selection for Algorithmic Fairness [61.767399505764736]
データ管理の統合コンポーネントにおける公平性について検討する。
本稿では,データセットの公平性を保証する特徴のサブコレクションを同定する手法を提案する。
論文 参考訳(メタデータ) (2020-06-10T20:20:10Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Estimating Treatment Effects with Observed Confounders and Mediators [25.338901482522648]
因果グラフが与えられた場合、do-calculusは経験的に推定できる観察関節分布の関数として治療効果を表現することができる。
時折、do-calculusは複数の有効な公式を識別し、対応する推定器の統計特性を比較するように促す。
本稿では,共同創設者と仲介者の両方が観察される過度に同定されたシナリオについて検討し,両推定手法の有効性を検証した。
論文 参考訳(メタデータ) (2020-03-26T15:50:25Z) - Fisher-Schultz Lecture: Generic Machine Learning Inference on
Heterogenous Treatment Effects in Randomized Experiments, with an Application
to Immunization in India [3.3449509626538543]
ランダム化実験における異種効果の重要な特徴を推定し,推定する手法を提案する。
主な特徴は、機械学習プロキシを使用した効果の最良の線形予測器、インパクトグループによってソートされた平均効果、および最も最も最も影響の少ないユニットの平均特性である。
論文 参考訳(メタデータ) (2017-12-13T14:47:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。