論文の概要: Estimating Treatment Effects with Observed Confounders and Mediators
- arxiv url: http://arxiv.org/abs/2003.11991v3
- Date: Mon, 14 Jun 2021 05:25:17 GMT
- ステータス: 処理完了
- システム内更新日: 2022-12-19 21:34:12.520455
- Title: Estimating Treatment Effects with Observed Confounders and Mediators
- Title(参考訳): 共同ファウンダーとメディエーターによる治療効果の評価
- Authors: Shantanu Gupta, Zachary C. Lipton, David Childers
- Abstract要約: 因果グラフが与えられた場合、do-calculusは経験的に推定できる観察関節分布の関数として治療効果を表現することができる。
時折、do-calculusは複数の有効な公式を識別し、対応する推定器の統計特性を比較するように促す。
本稿では,共同創設者と仲介者の両方が観察される過度に同定されたシナリオについて検討し,両推定手法の有効性を検証した。
- 参考スコア(独自算出の注目度): 25.338901482522648
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a causal graph, the do-calculus can express treatment effects as
functionals of the observational joint distribution that can be estimated
empirically. Sometimes the do-calculus identifies multiple valid formulae,
prompting us to compare the statistical properties of the corresponding
estimators. For example, the backdoor formula applies when all confounders are
observed and the frontdoor formula applies when an observed mediator transmits
the causal effect. In this paper, we investigate the over-identified scenario
where both confounders and mediators are observed, rendering both estimators
valid. Addressing the linear Gaussian causal model, we demonstrate that either
estimator can dominate the other by an unbounded constant factor. Next, we
derive an optimal estimator, which leverages all observed variables, and bound
its finite-sample variance. We show that it strictly outperforms the backdoor
and frontdoor estimators and that this improvement can be unbounded. We also
present a procedure for combining two datasets, one with observed confounders
and another with observed mediators. Finally, we evaluate our methods on both
simulated data and the IHDP and JTPA datasets.
- Abstract(参考訳): 因果グラフが与えられた場合、do-calculusは経験的に推定できる観察関節分布の関数として治療効果を表現することができる。
時折、do-calculusは複数の有効な公式を識別し、対応する推定子の統計的性質を比較する。
例えば、すべての共同創設者が観察された際にはバックドア公式が適用され、観察されたメディエーターが因果効果を伝達したときにはフロントドア公式が適用される。
本稿では,共同創設者と仲介者の両方が観察される過度に同定されたシナリオについて検討し,両推定手法の有効性を検証した。
線形ガウス因果モデルに対処し, いずれの推定子も非有界定数因子によって他方を支配できることを実証する。
次に、すべての観測変数を活用し、有限サンプル分散を束縛する最適推定器を得る。
バックドアおよびフロントドア推定器よりも厳格に優れており、この改善は非バウンド化可能であることを示す。
また,2つのデータセットを,1つは共同設立者,もう1つはメディエータで組み合わせる手順も提示する。
最後に、シミュレーションデータとIHDPおよびJTPAデータセットの両方で手法を評価する。
関連論文リスト
- Estimating Causal Effects from Learned Causal Networks [56.14597641617531]
本稿では、離散可観測変数に対する因果影響クエリに応答する代替パラダイムを提案する。
観測データから直接因果ベイズネットワークとその共起潜伏変数を学習する。
本手法は, 推定手法よりも有効であることを示す。
論文 参考訳(メタデータ) (2024-08-26T08:39:09Z) - Unveiling the Statistical Foundations of Chain-of-Thought Prompting Methods [59.779795063072655]
CoT(Chain-of-Thought)の促進とその変種は、多段階推論問題を解決する効果的な方法として人気を集めている。
統計的推定の観点からCoTのプロンプトを解析し,その複雑さを包括的に評価する。
論文 参考訳(メタデータ) (2024-08-25T04:07:18Z) - Approximating Counterfactual Bounds while Fusing Observational, Biased
and Randomised Data Sources [64.96984404868411]
我々は、複数の、偏見のある、観察的、介入的な研究からのデータを統合するという問題に対処する。
利用可能なデータの可能性は局所的な最大値を持たないことを示す。
次に、同じアプローチが複数のデータセットの一般的なケースにどのように対処できるかを示す。
論文 参考訳(メタデータ) (2023-07-31T11:28:24Z) - Causal Effect Estimation from Observational and Interventional Data
Through Matrix Weighted Linear Estimators [11.384045395629123]
本研究では,観測データと介入データの混合から因果効果を推定する。
予測二乗誤差の統計的効率は推定器を組み合わせることで向上できることを示す。
論文 参考訳(メタデータ) (2023-06-09T16:16:53Z) - Exploiting Observation Bias to Improve Matrix Completion [16.57405742112833]
本稿では,行列補完の変種について考察する。
目標は、バイアスと関心の結果の間の共有情報を利用して予測を改善することである。
この2段階のアルゴリズムでは,従来の行列補完法に比べて平均2乗誤差が30倍小さいことが判明した。
論文 参考訳(メタデータ) (2023-06-07T20:48:35Z) - Optimal regularizations for data generation with probabilistic graphical
models [0.0]
経験的に、よく調和された正規化スキームは、推論されたモデルの品質を劇的に改善する。
生成的ペアワイドグラフィカルモデルの最大Aポストエリオーリ(MAP)推論におけるL2とL1の正規化について検討する。
論文 参考訳(メタデータ) (2021-12-02T14:45:16Z) - Expected Validation Performance and Estimation of a Random Variable's
Maximum [48.83713377993604]
予測された検証性能に対する3つの統計的推定器を解析する。
偏りのない推定器は最も分散度が高く、最小分散度を持つ推定器は最大のバイアスを持つ。
2つの偏りのある推定器は、最も少ない誤った結論につながる。
論文 参考訳(メタデータ) (2021-10-01T18:48:47Z) - Counterfactual Maximum Likelihood Estimation for Training Deep Networks [83.44219640437657]
深層学習モデルは、予測的手がかりとして学習すべきでない急激な相関を学習する傾向がある。
本研究では,観測可能な共同設立者による相関関係の緩和を目的とした因果関係に基づくトレーニングフレームワークを提案する。
自然言語推論(NLI)と画像キャプションという2つの実世界の課題について実験を行った。
論文 参考訳(メタデータ) (2021-06-07T17:47:16Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
より優れた統計特性を得るために、二重ローバストなクロスフィット推定器が提案されている。
平均因果効果(ACE)に対する複数の推定器の性能評価のためのシミュレーション研究を行った。
機械学習で使用する場合、二重確率のクロスフィット推定器は、バイアス、分散、信頼区間のカバレッジで他のすべての推定器よりも大幅に優れていた。
論文 参考訳(メタデータ) (2020-04-21T23:09:55Z) - Posterior Ratio Estimation of Latent Variables [14.619879849533662]
いくつかのアプリケーションでは、観測から無視される確率変数の分布を比較したい。
潜在変数の2つの後続確率密度関数の比を推定する問題について検討する。
論文 参考訳(メタデータ) (2020-02-15T16:46:42Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。