JoyAgents-R1: Joint Evolution Dynamics for Versatile Multi-LLM Agents with Reinforcement Learning
- URL: http://arxiv.org/abs/2506.19846v1
- Date: Tue, 24 Jun 2025 17:59:31 GMT
- Title: JoyAgents-R1: Joint Evolution Dynamics for Versatile Multi-LLM Agents with Reinforcement Learning
- Authors: Ai Han, Junxing Hu, Pu Wei, Zhiqian Zhang, Yuhang Guo, Jiawei Lu, Zicheng Zhang,
- Abstract summary: We propose JoyAgents-R1, which first applies Group Relative Policy Optimization to the joint training of heterogeneous multi-agents.<n>We show that JoyAgents-R1 achieves performance comparable to that of larger LLMs while built on smaller open-source models.
- Score: 6.81021875668872
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-agent reinforcement learning (MARL) has emerged as a prominent paradigm for increasingly complex tasks. However, joint evolution across heterogeneous agents remains challenging due to cooperative inefficiency and training instability. In this paper, we propose the joint evolution dynamics for MARL called JoyAgents-R1, which first applies Group Relative Policy Optimization (GRPO) to the joint training of heterogeneous multi-agents. By iteratively refining agents' large language models (LLMs) and memories, the method achieves holistic equilibrium with optimal decision-making and memory capabilities. Specifically, JoyAgents-R1 first implements node-wise Monte Carlo sampling on the behavior of each agent across entire reasoning trajectories to enhance GRPO sampling efficiency while maintaining policy diversity. Then, our marginal benefit-driven selection strategy identifies top-$K$ sampling groups with maximal reward fluctuations, enabling targeted agent model updates that improve training stability and maximize joint benefits through cost-effective parameter adjustments. Meanwhile, JoyAgents-R1 introduces an adaptive memory evolution mechanism that repurposes GRPO rewards as cost-free supervisory signals to eliminate repetitive reasoning and accelerate convergence. Experiments across general and domain-specific scenarios demonstrate that JoyAgents-R1 achieves performance comparable to that of larger LLMs while built on smaller open-source models.
Related papers
- SEEA-R1: Tree-Structured Reinforcement Fine-Tuning for Self-Evolving Embodied Agents [31.726927520069616]
Self-Evolving Embodied Agents-R1, or SEEA-R1, is the first reinforcement fine-tuning framework designed for self-evolving embodied agents.<n>It converts sparse delayed rewards into denser intermediate signals that improve multi-step reasoning.<n>It generalizes reward estimation across tasks and scenes, supporting autonomous adaptation and reward-driven self-evolution.
arXiv Detail & Related papers (2025-06-26T18:00:07Z) - Multiple Weaks Win Single Strong: Large Language Models Ensemble Weak Reinforcement Learning Agents into a Supreme One [28.264011412168347]
Model ensemble is a useful approach in reinforcement learning (RL) for training effective agents.<n>We propose LLM-Ens, a novel approach that enhances RL model ensemble with task-specific semantic understandings.
arXiv Detail & Related papers (2025-05-21T09:35:43Z) - Collab: Controlled Decoding using Mixture of Agents for LLM Alignment [90.6117569025754]
Reinforcement learning from human feedback has emerged as an effective technique to align Large Language models.<n>Controlled Decoding provides a mechanism for aligning a model at inference time without retraining.<n>We propose a mixture of agent-based decoding strategies leveraging the existing off-the-shelf aligned LLM policies.
arXiv Detail & Related papers (2025-03-27T17:34:25Z) - ReMA: Learning to Meta-think for LLMs with Multi-Agent Reinforcement Learning [53.817538122688944]
We introduce Reinforced Meta-thinking Agents (ReMA) to elicit meta-thinking behaviors from Reasoning of Large Language Models (LLMs)<n>ReMA decouples the reasoning process into two hierarchical agents: a high-level meta-thinking agent responsible for generating strategic oversight and plans, and a low-level reasoning agent for detailed executions.<n> Empirical results from single-turn experiments demonstrate that ReMA outperforms single-agent RL baselines on complex reasoning tasks.
arXiv Detail & Related papers (2025-03-12T16:05:31Z) - Improving Retrospective Language Agents via Joint Policy Gradient Optimization [57.35348425288859]
RetroAct is a framework that jointly optimize both task-planning and self-reflective evolution capabilities in language agents.<n>We develop a two-stage joint optimization process that integrates imitation learning and reinforcement learning.<n>We conduct extensive experiments across various testing environments, demonstrating RetroAct has substantial improvements in task performance and decision-making processes.
arXiv Detail & Related papers (2025-03-03T12:54:54Z) - From Novice to Expert: LLM Agent Policy Optimization via Step-wise Reinforcement Learning [62.54484062185869]
We introduce StepAgent, which utilizes step-wise reward to optimize the agent's reinforcement learning process.<n>We propose implicit-reward and inverse reinforcement learning techniques to facilitate agent reflection and policy adjustment.
arXiv Detail & Related papers (2024-11-06T10:35:11Z) - Enhancing Heterogeneous Multi-Agent Cooperation in Decentralized MARL via GNN-driven Intrinsic Rewards [1.179778723980276]
Multi-agent Reinforcement Learning (MARL) is emerging as a key framework for sequential decision-making and control tasks.
The deployment of these systems in real-world scenarios often requires decentralized training, a diverse set of agents, and learning from infrequent environmental reward signals.
We propose the CoHet algorithm, which utilizes a novel Graph Neural Network (GNN) based intrinsic motivation to facilitate the learning of heterogeneous agent policies.
arXiv Detail & Related papers (2024-08-12T21:38:40Z) - Inducing Stackelberg Equilibrium through Spatio-Temporal Sequential
Decision-Making in Multi-Agent Reinforcement Learning [17.101534531286298]
We construct a Nash-level policy model based on a conditional hypernetwork shared by all agents.
This approach allows for asymmetric training with symmetric execution, with each agent responding optimally conditioned on the decisions made by superior agents.
Experiments demonstrate that our method effectively converges to the SE policies in repeated matrix game scenarios.
arXiv Detail & Related papers (2023-04-20T14:47:54Z) - Towards Global Optimality in Cooperative MARL with the Transformation
And Distillation Framework [26.612749327414335]
Decentralized execution is one core demand in cooperative multi-agent reinforcement learning (MARL)
In this paper, we theoretically analyze two common classes of algorithms with decentralized policies -- multi-agent policy gradient methods and value-decomposition methods.
We show that TAD-PPO can theoretically perform optimal policy learning in the finite multi-agent MDPs and shows significant outperformance on a large set of cooperative multi-agent tasks.
arXiv Detail & Related papers (2022-07-12T06:59:13Z) - Permutation Invariant Policy Optimization for Mean-Field Multi-Agent
Reinforcement Learning: A Principled Approach [128.62787284435007]
We propose the mean-field proximal policy optimization (MF-PPO) algorithm, at the core of which is a permutation-invariant actor-critic neural architecture.
We prove that MF-PPO attains the globally optimal policy at a sublinear rate of convergence.
In particular, we show that the inductive bias introduced by the permutation-invariant neural architecture enables MF-PPO to outperform existing competitors.
arXiv Detail & Related papers (2021-05-18T04:35:41Z) - Model-based Multi-agent Policy Optimization with Adaptive Opponent-wise
Rollouts [52.844741540236285]
This paper investigates the model-based methods in multi-agent reinforcement learning (MARL)
We propose a novel decentralized model-based MARL method, named Adaptive Opponent-wise Rollout Policy (AORPO)
arXiv Detail & Related papers (2021-05-07T16:20:22Z) - The Gradient Convergence Bound of Federated Multi-Agent Reinforcement
Learning with Efficient Communication [20.891460617583302]
The paper considers independent reinforcement learning (IRL) for collaborative decision-making in the paradigm of federated learning (FL)
FL generates excessive communication overheads between agents and a remote central server.
This paper proposes two advanced optimization schemes to improve the system's utility value.
arXiv Detail & Related papers (2021-03-24T07:21:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.