論文の概要: Learning to Program with Natural Language
- arxiv url: http://arxiv.org/abs/2304.10464v3
- Date: Mon, 29 May 2023 01:12:18 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 00:50:07.145906
- Title: Learning to Program with Natural Language
- Title(参考訳): 自然言語によるプログラミングの学習
- Authors: Yiduo Guo, Yaobo Liang, Chenfei Wu, Wenshan Wu, Dongyan Zhao, Nan Duan
- Abstract要約: 大規模言語モデル(LLM)は、様々な基本自然言語タスクにおいて顕著な性能を示している。
本稿では,タスクプロシージャを記述するために,自然言語を新しい言語として用いることを提案する。
- 参考スコア(独自算出の注目度): 82.01687098574722
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large Language Models (LLMs) have shown remarkable performance in various
basic natural language tasks, which raises hope for achieving Artificial
General Intelligence. For completing the complex task, we still need a program
for the task first and then ask LLMs to follow the program to generate the
specific solution. We propose using natural language as a new programming
language to describe task procedures, making them easily understandable to both
humans and LLMs. ~The LLM is capable of directly generating natural language
programs, but these programs may still contain factual errors or incomplete
steps. Therefore, we further propose the Learning to Program (\text{LP}) method
to ask LLMs themselves to learn the natural language program based on the
training dataset of the complex task first and then use the learned program to
guide the inference. Our experiments on the reasoning tasks of five different
reasoning types (8 datasets) demonstrate the effectiveness of our approach.
Further, our analysis experiment shows that the learned program can be directly
used to guide another LLM to improve its performance, which reveals a new
transfer learning paradigm.
- Abstract(参考訳): 大規模言語モデル(LLM)は、様々な基本自然言語タスクにおいて顕著な性能を示しており、人工知能の実現への期待が高まっている。
複雑なタスクを完了するには、まずタスクのためのプログラムが必要で、次にllmsに特定のソリューションを生成するためにプログラムに従うように依頼します。
タスク手順を記述するための新しいプログラミング言語として自然言語を使うことを提案し,人間とllmの両方で容易に理解できるようにする。
llmは自然言語プログラムを直接生成することができるが、これらのプログラムは事実エラーや不完全なステップを含む可能性がある。
そこで我々は,LLMに対して,まず複雑なタスクのトレーニングデータセットに基づいて自然言語プログラムを学習するよう依頼する学習 to Program(\text{LP})法を提案し,次に学習プログラムを用いて推論をガイドする。
5つの異なる推論型(8つのデータセット)の推論タスクに関する実験は、我々のアプローチの有効性を実証している。
さらに,本解析実験により,学習プログラムを他のLLMの指導に利用することで,その性能向上が図られ,新たな伝達学習パラダイムが明らかとなった。
関連論文リスト
- Interactive and Expressive Code-Augmented Planning with Large Language Models [62.799579304821826]
大きな言語モデル(LLM)は、常識的推論と対話的な意思決定において強力な能力を示す。
近年,制御フローなどのコード・アジャセント技術を用いてLCM出力を構造化し,計画性能を向上させる技術が提案されている。
完全コード表現で動的なLEM計画手法であるREPL-Planを提案する。
論文 参考訳(メタデータ) (2024-11-21T04:23:17Z) - DOTS: Learning to Reason Dynamically in LLMs via Optimal Reasoning Trajectories Search [37.16633337724158]
DOTS は LLM が最適推論軌道探索によって動的に推論できるアプローチである。
提案手法は静的推論手法とバニラ命令チューニング手法より一貫して優れている。
論文 参考訳(メタデータ) (2024-10-04T18:58:09Z) - Q*: Improving Multi-step Reasoning for LLMs with Deliberative Planning [53.6472920229013]
大規模言語モデル(LLM)は多くの自然言語タスクにおいて印象的な能力を示している。
LLMは多段階推論を行う際にエラー、幻覚、矛盾する文を生成する傾向がある。
本稿では,LLMの復号化過程を検討計画で導くためのフレームワークであるQ*を紹介する。
論文 参考訳(メタデータ) (2024-06-20T13:08:09Z) - Exploring and Benchmarking the Planning Capabilities of Large Language Models [57.23454975238014]
この研究は、大規模言語モデル(LLM)の計画能力を改善するための基礎を築いた。
我々は、古典的な計画ベンチマークと自然言語シナリオの両方を含む包括的なベンチマークスイートを構築した。
本研究は,LLM計画の強化を目的としたマルチショットインコンテキスト学習について検討し,文脈長の増大と計画性能の向上の関係について検討する。
論文 参考訳(メタデータ) (2024-06-18T22:57:06Z) - From Words to Actions: Unveiling the Theoretical Underpinnings of LLM-Driven Autonomous Systems [59.40480894948944]
大規模言語モデル (LLM) は、物理世界の意思決定問題を解くことができる。
このモデルの下で、LLM Plannerは、プロンプトを介して言語ベースのサブゴールを反復的に生成することにより、部分的に観測可能なマルコフ決定プロセス(POMDP)をナビゲートする。
我々は,事前学習したLLMプランナーが,文脈内学習を通じてベイズ的集計模倣学習(BAIL)を効果的に行うことを証明した。
論文 参考訳(メタデータ) (2024-05-30T09:42:54Z) - Distilling Instruction-following Abilities of Large Language Models with Task-aware Curriculum Planning [12.651588927599441]
インストラクションチューニングは、大きな言語モデルにオープンドメイン命令と人間優先応答を合わせることを目的としている。
学生のLLMの追従が難しい命令を選択するために,TAPIR(Task-Aware Curriculum Planning for Instruction Refinement)を導入する。
学生の能力のバランスをとるために、トレーニングセット内のタスク分布は、対応するタスクに応じて自動的に調整された応答で調整される。
論文 参考訳(メタデータ) (2024-05-22T08:38:26Z) - TIC: Translate-Infer-Compile for accurate "text to plan" using LLMs and Logical Representations [0.0]
本研究では,自然言語計画タスク要求の計画作成の問題について検討する。
本手法は,LLMを用いて自然言語タスク記述の解釈可能な中間表現を生成する。
中間表現のみを出力するためにLLMを用いると、LLMの誤差が大幅に減少する。
論文 参考訳(メタデータ) (2024-02-09T18:39:13Z) - TRACE: A Comprehensive Benchmark for Continual Learning in Large
Language Models [52.734140807634624]
調整された大規模言語モデル(LLM)は、タスク解決、指示に従うこと、安全性を確保することにおいて、例外的な能力を示す。
既存の連続学習ベンチマークでは、LLMをリードする上で十分な課題が欠如している。
LLMにおける継続学習を評価するための新しいベンチマークであるTRACEを紹介する。
論文 参考訳(メタデータ) (2023-10-10T16:38:49Z) - ISR-LLM: Iterative Self-Refined Large Language Model for Long-Horizon
Sequential Task Planning [7.701407633867452]
大規模言語モデル(LLM)は、タスクに依存しないプランナとして一般化性を高める可能性を提供する。
ISR-LLMは,反復的な自己複製プロセスを通じてLCMに基づく計画を改善する新しいフレームワークである。
ISR-LLM は現状の LLM ベースのプランナに比べてタスク達成率を大幅に向上できることを示す。
論文 参考訳(メタデータ) (2023-08-26T01:31:35Z) - Understanding the Capabilities of Large Language Models for Automated
Planning [24.37599752610625]
この研究は、複雑な計画問題の解決におけるLLMの能力に光を当てようとしている。
この文脈で LLM を使用するための最も効果的なアプローチに関する洞察を提供する。
論文 参考訳(メタデータ) (2023-05-25T15:21:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。