"HOT" ChatGPT: The promise of ChatGPT in detecting and discriminating
hateful, offensive, and toxic comments on social media
- URL: http://arxiv.org/abs/2304.10619v1
- Date: Thu, 20 Apr 2023 19:40:51 GMT
- Title: "HOT" ChatGPT: The promise of ChatGPT in detecting and discriminating
hateful, offensive, and toxic comments on social media
- Authors: Lingyao Li, Lizhou Fan, Shubham Atreja, Libby Hemphill
- Abstract summary: Generative AI models have the potential to understand and detect harmful content.
ChatGPT can achieve an accuracy of approximately 80% when compared to human annotations.
- Score: 2.105577305992576
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Harmful content is pervasive on social media, poisoning online communities
and negatively impacting participation. A common approach to address this issue
is to develop detection models that rely on human annotations. However, the
tasks required to build such models expose annotators to harmful and offensive
content and may require significant time and cost to complete. Generative AI
models have the potential to understand and detect harmful content. To
investigate this potential, we used ChatGPT and compared its performance with
MTurker annotations for three frequently discussed concepts related to harmful
content: Hateful, Offensive, and Toxic (HOT). We designed five prompts to
interact with ChatGPT and conducted four experiments eliciting HOT
classifications. Our results show that ChatGPT can achieve an accuracy of
approximately 80% when compared to MTurker annotations. Specifically, the model
displays a more consistent classification for non-HOT comments than HOT
comments compared to human annotations. Our findings also suggest that ChatGPT
classifications align with provided HOT definitions, but ChatGPT classifies
"hateful" and "offensive" as subsets of "toxic." Moreover, the choice of
prompts used to interact with ChatGPT impacts its performance. Based on these
in-sights, our study provides several meaningful implications for employing
ChatGPT to detect HOT content, particularly regarding the reliability and
consistency of its performance, its understand-ing and reasoning of the HOT
concept, and the impact of prompts on its performance. Overall, our study
provides guidance about the potential of using generative AI models to moderate
large volumes of user-generated content on social media.
Related papers
- Exploring the Capability of ChatGPT to Reproduce Human Labels for Social Computing Tasks (Extended Version) [26.643834593780007]
We investigate the extent to which ChatGPT can annotate data for social computing tasks.
ChatGPT exhibits promise in handling data annotation tasks, albeit with some challenges.
We propose GPT-Rater, a tool to predict if ChatGPT can correctly label data for a given annotation task.
arXiv Detail & Related papers (2024-07-08T22:04:30Z) - Exploring ChatGPT's Capabilities on Vulnerability Management [56.4403395100589]
We explore ChatGPT's capabilities on 6 tasks involving the complete vulnerability management process with a large-scale dataset containing 70,346 samples.
One notable example is ChatGPT's proficiency in tasks like generating titles for software bug reports.
Our findings reveal the difficulties encountered by ChatGPT and shed light on promising future directions.
arXiv Detail & Related papers (2023-11-11T11:01:13Z) - DEMASQ: Unmasking the ChatGPT Wordsmith [63.8746084667206]
We propose an effective ChatGPT detector named DEMASQ, which accurately identifies ChatGPT-generated content.
Our method addresses two critical factors: (i) the distinct biases in text composition observed in human- and machine-generated content and (ii) the alterations made by humans to evade previous detection methods.
arXiv Detail & Related papers (2023-11-08T21:13:05Z) - Evaluating ChatGPT's Information Extraction Capabilities: An Assessment
of Performance, Explainability, Calibration, and Faithfulness [18.945934162722466]
We focus on assessing the overall ability of ChatGPT using 7 fine-grained information extraction (IE) tasks.
ChatGPT's performance in Standard-IE setting is poor, but it surprisingly exhibits excellent performance in the OpenIE setting.
ChatGPT provides high-quality and trustworthy explanations for its decisions.
arXiv Detail & Related papers (2023-04-23T12:33:18Z) - ChatGPT-Crawler: Find out if ChatGPT really knows what it's talking
about [15.19126287569545]
This research examines the responses generated by ChatGPT from different Conversational QA corpora.
The study employed BERT similarity scores to compare these responses with correct answers and obtain Natural Language Inference(NLI) labels.
The study identified instances where ChatGPT provided incorrect answers to questions, providing insights into areas where the model may be prone to error.
arXiv Detail & Related papers (2023-04-06T18:42:47Z) - To ChatGPT, or not to ChatGPT: That is the question! [78.407861566006]
This study provides a comprehensive and contemporary assessment of the most recent techniques in ChatGPT detection.
We have curated a benchmark dataset consisting of prompts from ChatGPT and humans, including diverse questions from medical, open Q&A, and finance domains.
Our evaluation results demonstrate that none of the existing methods can effectively detect ChatGPT-generated content.
arXiv Detail & Related papers (2023-04-04T03:04:28Z) - Is ChatGPT a Good NLG Evaluator? A Preliminary Study [121.77986688862302]
We provide a preliminary meta-evaluation on ChatGPT to show its reliability as an NLG metric.
Experimental results show that compared with previous automatic metrics, ChatGPT achieves state-of-the-art or competitive correlation with human judgments.
We hope our preliminary study could prompt the emergence of a general-purposed reliable NLG metric.
arXiv Detail & Related papers (2023-03-07T16:57:20Z) - On the Robustness of ChatGPT: An Adversarial and Out-of-distribution
Perspective [67.98821225810204]
We evaluate the robustness of ChatGPT from the adversarial and out-of-distribution perspective.
Results show consistent advantages on most adversarial and OOD classification and translation tasks.
ChatGPT shows astounding performance in understanding dialogue-related texts.
arXiv Detail & Related papers (2023-02-22T11:01:20Z) - Can ChatGPT Understand Too? A Comparative Study on ChatGPT and
Fine-tuned BERT [103.57103957631067]
ChatGPT has attracted great attention, as it can generate fluent and high-quality responses to human inquiries.
We evaluate ChatGPT's understanding ability by evaluating it on the most popular GLUE benchmark, and comparing it with 4 representative fine-tuned BERT-style models.
We find that: 1) ChatGPT falls short in handling paraphrase and similarity tasks; 2) ChatGPT outperforms all BERT models on inference tasks by a large margin; 3) ChatGPT achieves comparable performance compared with BERT on sentiment analysis and question answering tasks.
arXiv Detail & Related papers (2023-02-19T12:29:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.