論文の概要: Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data
- arxiv url: http://arxiv.org/abs/2304.10722v1
- Date: Fri, 21 Apr 2023 03:26:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 15:56:39.971501
- Title: Reinforcement Learning Approaches for Traffic Signal Control under
Missing Data
- Title(参考訳): 欠落データに基づく交通信号制御のための強化学習手法
- Authors: Hao Mei, Junxian Li, Bin Shi, Hua Wei
- Abstract要約: 現実世界の都市では、センサーの欠如により交通状態の観察が欠如することがある。
本稿では, 適応制御を実現するために, トラフィック状態をインプットし, 適応制御とRLエージェントの訓練を可能にするために, 状態と報酬の両方をインプットする2つの方法を提案する。
- 参考スコア(独自算出の注目度): 5.896742981602458
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The emergence of reinforcement learning (RL) methods in traffic signal
control tasks has achieved better performance than conventional rule-based
approaches. Most RL approaches require the observation of the environment for
the agent to decide which action is optimal for a long-term reward. However, in
real-world urban scenarios, missing observation of traffic states may
frequently occur due to the lack of sensors, which makes existing RL methods
inapplicable on road networks with missing observation. In this work, we aim to
control the traffic signals in a real-world setting, where some of the
intersections in the road network are not installed with sensors and thus with
no direct observations around them. To the best of our knowledge, we are the
first to use RL methods to tackle the traffic signal control problem in this
real-world setting. Specifically, we propose two solutions: the first one
imputes the traffic states to enable adaptive control, and the second one
imputes both states and rewards to enable adaptive control and the training of
RL agents. Through extensive experiments on both synthetic and real-world road
network traffic, we reveal that our method outperforms conventional approaches
and performs consistently with different missing rates. We also provide further
investigations on how missing data influences the performance of our model.
- Abstract(参考訳): 信号制御タスクにおける強化学習(RL)手法の出現は,従来のルールベース手法よりも優れた性能を実現している。
ほとんどのRLアプローチでは、エージェントが長期的な報酬に最適なアクションを決定するために環境を観察する必要がある。
しかし、現実の都市では、センサの欠如により交通状態の観察が欠如することがあるため、既存のRL法を道路網に適用できず、観測が欠如している。
本研究では,道路網の交差点の一部にセンサを装着せず,その周辺を直接観測することなく,実環境において交通信号を制御することを目的とする。
我々の知る限りでは、実世界の交通信号制御問題に対処するためにRL法を最初に利用した人物である。
具体的には,第1に適応制御を実現するために交通状態をインプットし,第2に適応制御とRLエージェントのトレーニングを可能にするために,状態と報酬の両方をインプットする。
本手法は,合成と実世界の道路網トラフィックの両方について広範な実験を行い,従来の手法よりも優れており,異なる欠落率で一貫した性能を示す。
また,データの欠落がモデルの性能に与える影響についてもさらなる調査を行う。
関連論文リスト
- Reinforcement Learning for Adaptive Traffic Signal Control: Turn-Based and Time-Based Approaches to Reduce Congestion [2.733700237741334]
本稿では,交差点における信号処理の強化にReinforcement Learning(強化学習)を用いることについて検討する。
本稿では,リアルタイム待ち行列長に基づく信号の動的優先順位付けを行うターンベースエージェントと,交通条件に応じた信号位相長の調整を行うタイムベースエージェントの2つのアルゴリズムを紹介する。
シミュレーションの結果、両RLアルゴリズムは従来の信号制御システムよりも大幅に優れていた。
論文 参考訳(メタデータ) (2024-08-28T12:35:56Z) - A Holistic Framework Towards Vision-based Traffic Signal Control with
Microscopic Simulation [53.39174966020085]
交通信号制御(TSC)は交通渋滞を低減し、交通の流れを円滑にし、アイドリング時間を短縮し、CO2排出量を減らすために重要である。
本研究では,道路交通の流れを視覚的観察によって調節するTSCのコンピュータビジョンアプローチについて検討する。
我々は、視覚ベースのTSCとそのベンチマークに向けて、TrafficDojoと呼ばれる総合的なトラフィックシミュレーションフレームワークを導入する。
論文 参考訳(メタデータ) (2024-03-11T16:42:29Z) - A Fully Data-Driven Approach for Realistic Traffic Signal Control Using
Offline Reinforcement Learning [18.2541182874636]
現実的な交通信号制御のための完全データ駆動・シミュレータフリーフレームワークを提案する。
我々は、確立されたトラフィックフロー理論と機械学習を組み合わせることで、粗いトラフィックデータから報酬信号を推測する。
従来のRLベースラインやオフラインのRLベースラインよりも優れた性能を実現し,実世界の適用性も向上した。
論文 参考訳(メタデータ) (2023-11-27T15:29:21Z) - DenseLight: Efficient Control for Large-scale Traffic Signals with Dense
Feedback [109.84667902348498]
交通信号制御(TSC)は、道路網における車両の平均走行時間を短縮することを目的としている。
従来のTSC手法は、深い強化学習を利用して制御ポリシーを探索する。
DenseLightは、不偏報酬関数を用いてポリシーの有効性をフィードバックする新しいRTLベースのTSC手法である。
論文 参考訳(メタデータ) (2023-06-13T05:58:57Z) - Improving the generalizability and robustness of large-scale traffic
signal control [3.8028221877086814]
交通信号の制御における深部強化学習(RL)アプローチの堅牢性について検討する。
欠落したデータに対して,近年の手法が脆弱なままであることを示す。
政策アンサンブルによる分散強化学習とバニラ強化学習の組み合わせを提案する。
論文 参考訳(メタデータ) (2023-06-02T21:30:44Z) - Unified Automatic Control of Vehicular Systems with Reinforcement
Learning [64.63619662693068]
本稿では,車載マイクロシミュレーションの合理化手法について述べる。
最小限の手動設計で高性能な制御戦略を発見する。
この研究は、波動緩和、交通信号、ランプ計測に類似した多くの創発的挙動を明らかにしている。
論文 参考訳(メタデータ) (2022-07-30T16:23:45Z) - Traffic Management of Autonomous Vehicles using Policy Based Deep
Reinforcement Learning and Intelligent Routing [0.26249027950824505]
本稿では,交差点の混雑状況に応じて交通信号を調整するDRLに基づく信号制御システムを提案する。
交差点の後方の道路での渋滞に対処するため,道路ネットワーク上で車両のバランスをとるために再ルート手法を用いた。
論文 参考訳(メタデータ) (2022-06-28T02:46:20Z) - Road Network Guided Fine-Grained Urban Traffic Flow Inference [108.64631590347352]
粗いトラフィックからのきめ細かなトラフィックフローの正確な推測は、新たな重要な問題である。
本稿では,道路ネットワークの知識を活かした新しい道路対応交通流磁化器(RATFM)を提案する。
提案手法は,高品質なトラフィックフローマップを作成できる。
論文 参考訳(メタデータ) (2021-09-29T07:51:49Z) - A Deep Reinforcement Learning Approach for Fair Traffic Signal Control [1.8275108630751837]
本稿では,遅延ベースとスループットベースという2つのフェアネスの概念を紹介する。
本稿では,DRLに基づく2つの交通信号制御手法を提案し,高いスループットを実現する。
論文 参考訳(メタデータ) (2021-07-21T15:23:52Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
交差点をナビゲートすることは、自動運転車にとって大きな課題の1つです。
本研究では,交通標識のみが提供された交差点をナビゲート可能なシステムの実装に着目する。
本研究では,時間ステップ毎に加速度と操舵角を予測するためのニューラルネットワークの訓練に用いる,モデルフリーの連続学習アルゴリズムを用いたマルチエージェントシステムを提案する。
論文 参考訳(メタデータ) (2021-04-28T07:54:40Z) - MetaVIM: Meta Variationally Intrinsic Motivated Reinforcement Learning for Decentralized Traffic Signal Control [54.162449208797334]
交通信号制御は、交差点を横断する交通信号を調整し、地域や都市の交通効率を向上させることを目的としている。
近年,交通信号制御に深部強化学習(RL)を適用し,各信号がエージェントとみなされる有望な性能を示した。
本稿では,近隣情報を考慮した各交差点の分散化政策を潜時的に学習するメタ変動固有モチベーション(MetaVIM)RL法を提案する。
論文 参考訳(メタデータ) (2021-01-04T03:06:08Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。