Classical-to-Quantum Sequence Encoding in Genomics
- URL: http://arxiv.org/abs/2304.10786v1
- Date: Fri, 21 Apr 2023 07:35:49 GMT
- Title: Classical-to-Quantum Sequence Encoding in Genomics
- Authors: Nouhaila Innan and Muhammad Al-Zafar Khan
- Abstract summary: We present several novel methods of performing classical-to-quantum data encoding inspired by various mathematical fields.
We introduce algorithms that draw inspiration from diverse fields such as Electrical and Electronic Engineering, Information Theory, Differential Geometry, and Neural Network architectures.
We propose a contemporary method for testing encoded DNA sequences using Quantum Boltzmann Machines.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: DNA sequencing allows for the determination of the genetic code of an
organism, and therefore is an indispensable tool that has applications in
Medicine, Life Sciences, Evolutionary Biology, Food Sciences and Technology,
and Agriculture. In this paper, we present several novel methods of performing
classical-to-quantum data encoding inspired by various mathematical fields, and
we demonstrate these ideas within Bioinformatics. In particular, we introduce
algorithms that draw inspiration from diverse fields such as Electrical and
Electronic Engineering, Information Theory, Differential Geometry, and Neural
Network architectures. We provide a complete overview of the existing data
encoding schemes and show how to use them in Genomics. The algorithms provided
utilise lossless compression, wavelet-based encoding, and information entropy.
Moreover, we propose a contemporary method for testing encoded DNA sequences
using Quantum Boltzmann Machines. To evaluate the effectiveness of our
algorithms, we discuss a potential dataset that serves as a sandbox environment
for testing against real-world scenarios. Our research contributes to
developing classical-to-quantum data encoding methods in the science of
Bioinformatics by introducing innovative algorithms that utilise diverse fields
and advanced techniques. Our findings offer insights into the potential of
Quantum Computing in Bioinformatics and have implications for future research
in this area.
Related papers
- Towards Biologically Plausible Computing: A Comprehensive Comparison [24.299920289520013]
Backpropagation is a cornerstone algorithm in training neural networks for supervised learning.
The biological plausibility of backpropagation is questioned due to its requirements for weight symmetry, global error computation, and dual-phase training.
In this study, we establish criteria for biological plausibility that a desirable learning algorithm should meet.
arXiv Detail & Related papers (2024-06-23T09:51:20Z) - Hyperdimensional computing: a fast, robust and interpretable paradigm
for biological data [9.094234519404907]
New algorithms for processing diverse biological data sources have revolutionized bioinformatics.
Deep learning has substantially transformed bioinformatics, addressing sequence, structure, and functional analyses.
Hyperdimensional computing has emerged as an intriguing alternative.
arXiv Detail & Related papers (2024-02-27T15:09:20Z) - A Review of Neuroscience-Inspired Machine Learning [58.72729525961739]
Bio-plausible credit assignment is compatible with practically any learning condition and is energy-efficient.
In this paper, we survey several vital algorithms that model bio-plausible rules of credit assignment in artificial neural networks.
We conclude by discussing the future challenges that will need to be addressed in order to make such algorithms more useful in practical applications.
arXiv Detail & Related papers (2024-02-16T18:05:09Z) - Neural Echos: Depthwise Convolutional Filters Replicate Biological
Receptive Fields [56.69755544814834]
We present evidence suggesting that depthwise convolutional kernels are effectively replicating the biological receptive fields observed in the mammalian retina.
We propose a scheme that draws inspiration from the biological receptive fields.
arXiv Detail & Related papers (2024-01-18T18:06:22Z) - Efficient, probabilistic analysis of combinatorial neural codes [0.0]
neural networks encode inputs in the form of combinations of individual neurons' activities.
These neural codes present a computational challenge due to their high dimensionality and often large volumes of data.
We apply methods previously applied to small examples and apply them to large neural codes generated by experiments.
arXiv Detail & Related papers (2022-10-19T11:58:26Z) - Understanding the Mapping of Encode Data Through An Implementation of
Quantum Topological Analysis [0.7106986689736827]
We show the difference in encoding techniques can be visualized by investigating the topology of the data embedded in complex Hilbert space.
Our results suggest the encoding method needs to be considered carefully within different quantum machine learning models.
arXiv Detail & Related papers (2022-09-21T18:46:08Z) - Improving RNA Secondary Structure Design using Deep Reinforcement
Learning [69.63971634605797]
We propose a new benchmark of applying reinforcement learning to RNA sequence design, in which the objective function is defined to be the free energy in the sequence's secondary structure.
We show results of the ablation analysis that we do for these algorithms, as well as graphs indicating the algorithm's performance across batches.
arXiv Detail & Related papers (2021-11-05T02:54:06Z) - Deep Algorithm Unrolling for Biomedical Imaging [99.73317152134028]
In this chapter, we review biomedical applications and breakthroughs via leveraging algorithm unrolling.
We trace the origin of algorithm unrolling and provide a comprehensive tutorial on how to unroll iterative algorithms into deep networks.
We conclude the chapter by discussing open challenges, and suggesting future research directions.
arXiv Detail & Related papers (2021-08-15T01:06:26Z) - Neural Multi-Hop Reasoning With Logical Rules on Biomedical Knowledge
Graphs [10.244651735862627]
We conduct an empirical study based on the real-world task of drug repurposing.
We formulate this task as a link prediction problem where both compounds and diseases correspond to entities in a knowledge graph.
We propose a new method, PoLo, that combines policy-guided walks based on reinforcement learning with logical rules.
arXiv Detail & Related papers (2021-03-18T16:46:11Z) - A Meta-embedding-based Ensemble Approach for ICD Coding Prediction [64.42386426730695]
International Classification of Diseases (ICD) are the de facto codes used globally for clinical coding.
These codes enable healthcare providers to claim reimbursement and facilitate efficient storage and retrieval of diagnostic information.
Our proposed approach enhances the performance of neural models by effectively training word vectors using routine medical data as well as external knowledge from scientific articles.
arXiv Detail & Related papers (2021-02-26T17:49:58Z) - Machine Learning in Nano-Scale Biomedical Engineering [77.75587007080894]
We review the existing research regarding the use of machine learning in nano-scale biomedical engineering.
The main challenges that can be formulated as ML problems are classified into the three main categories.
For each of the presented methodologies, special emphasis is given to its principles, applications, and limitations.
arXiv Detail & Related papers (2020-08-05T15:45:54Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.