Can GPT-4 Perform Neural Architecture Search?
- URL: http://arxiv.org/abs/2304.10970v4
- Date: Wed, 2 Aug 2023 03:59:34 GMT
- Title: Can GPT-4 Perform Neural Architecture Search?
- Authors: Mingkai Zheng, Xiu Su, Shan You, Fei Wang, Chen Qian, Chang Xu, Samuel
Albanie
- Abstract summary: We investigate the potential of GPT-4 to perform Neural Architecture Search (NAS)
Our proposed approach, textbfGPT-4 textbfEnhanced textbfNeural archtextbfItecttextbfUre textbfSearch (GENIUS)
We assess GENIUS across several benchmarks, comparing it with existing state-of-the-art NAS techniques to illustrate its effectiveness.
- Score: 56.98363718371614
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the potential of GPT-4~\cite{gpt4} to perform Neural
Architecture Search (NAS) -- the task of designing effective neural
architectures. Our proposed approach, \textbf{G}PT-4 \textbf{E}nhanced
\textbf{N}eural arch\textbf{I}tect\textbf{U}re \textbf{S}earch (GENIUS),
leverages the generative capabilities of GPT-4 as a black-box optimiser to
quickly navigate the architecture search space, pinpoint promising candidates,
and iteratively refine these candidates to improve performance. We assess
GENIUS across several benchmarks, comparing it with existing state-of-the-art
NAS techniques to illustrate its effectiveness. Rather than targeting
state-of-the-art performance, our objective is to highlight GPT-4's potential
to assist research on a challenging technical problem through a simple
prompting scheme that requires relatively limited domain
expertise\footnote{Code available at
\href{https://github.com/mingkai-zheng/GENIUS}{https://github.com/mingkai-zheng/GENIUS}.}.
More broadly, we believe our preliminary results point to future research that
harnesses general purpose language models for diverse optimisation tasks. We
also highlight important limitations to our study, and note implications for AI
safety.
Related papers
- Exploiting GPT-4 Vision for Zero-shot Point Cloud Understanding [114.4754255143887]
We tackle the challenge of classifying the object category in point clouds.
We employ GPT-4 Vision (GPT-4V) to overcome these challenges.
We set a new benchmark in zero-shot point cloud classification.
arXiv Detail & Related papers (2024-01-15T10:16:44Z) - Construction of Hierarchical Neural Architecture Search Spaces based on
Context-free Grammars [66.05096551112932]
We introduce a unifying search space design framework based on context-free grammars.
By enhancing and using their properties, we effectively enable search over the complete architecture.
We show that our search strategy can be superior to existing Neural Architecture Search approaches.
arXiv Detail & Related papers (2022-11-03T14:23:00Z) - Searching a High-Performance Feature Extractor for Text Recognition
Network [92.12492627169108]
We design a domain-specific search space by exploring principles for having good feature extractors.
As the space is huge and complexly structured, no existing NAS algorithms can be applied.
We propose a two-stage algorithm to effectively search in the space.
arXiv Detail & Related papers (2022-09-27T03:49:04Z) - DFG-NAS: Deep and Flexible Graph Neural Architecture Search [27.337894841649494]
This paper proposes DFG-NAS, a new neural architecture search (NAS) method that enables the automatic search of very deep and flexible GNN architectures.
DFG-NAS highlights another level of design: the search for macro-architectures on how atomic propagation (textbftexttP) and transformation (textbftextttT) operations are integrated and organized into a GNN.
Empirical studies on four node classification tasks demonstrate that DFG-NAS outperforms state-of-the-art manual designs and NAS methods of GNNs.
arXiv Detail & Related papers (2022-06-17T06:47:21Z) - Neural Architecture Search for Speech Emotion Recognition [72.1966266171951]
We propose to apply neural architecture search (NAS) techniques to automatically configure the SER models.
We show that NAS can improve SER performance (54.89% to 56.28%) while maintaining model parameter sizes.
arXiv Detail & Related papers (2022-03-31T10:16:10Z) - Edge-featured Graph Neural Architecture Search [131.4361207769865]
We propose Edge-featured Graph Neural Architecture Search to find the optimal GNN architecture.
Specifically, we design rich entity and edge updating operations to learn high-order representations.
We show EGNAS can search better GNNs with higher performance than current state-of-the-art human-designed and searched-based GNNs.
arXiv Detail & Related papers (2021-09-03T07:53:18Z) - Interpretable Neural Architecture Search via Bayesian Optimisation with
Weisfeiler-Lehman Kernels [17.945881805452288]
Current neural architecture search (NAS) strategies focus on finding a single, good, architecture.
We propose a Bayesian optimisation approach for NAS that combines the Weisfeiler-Lehman graph kernel with a Gaussian process surrogate.
Our method affords interpretability by discovering useful network features and their corresponding impact on the network performance.
arXiv Detail & Related papers (2020-06-13T04:10:34Z) - Neural Architecture Generator Optimization [9.082931889304723]
We are first to investigate casting NAS as a problem of finding the optimal network generator.
We propose a new, hierarchical and graph-based search space capable of representing an extremely large variety of network types.
arXiv Detail & Related papers (2020-04-03T06:38:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.