Exploiting GPT-4 Vision for Zero-shot Point Cloud Understanding
- URL: http://arxiv.org/abs/2401.07572v1
- Date: Mon, 15 Jan 2024 10:16:44 GMT
- Title: Exploiting GPT-4 Vision for Zero-shot Point Cloud Understanding
- Authors: Qi Sun, Xiao Cui, Wengang Zhou and Houqiang Li
- Abstract summary: We tackle the challenge of classifying the object category in point clouds.
We employ GPT-4 Vision (GPT-4V) to overcome these challenges.
We set a new benchmark in zero-shot point cloud classification.
- Score: 114.4754255143887
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In this study, we tackle the challenge of classifying the object category in
point clouds, which previous works like PointCLIP struggle to address due to
the inherent limitations of the CLIP architecture. Our approach leverages GPT-4
Vision (GPT-4V) to overcome these challenges by employing its advanced
generative abilities, enabling a more adaptive and robust classification
process. We adapt the application of GPT-4V to process complex 3D data,
enabling it to achieve zero-shot recognition capabilities without altering the
underlying model architecture. Our methodology also includes a systematic
strategy for point cloud image visualization, mitigating domain gap and
enhancing GPT-4V's efficiency. Experimental validation demonstrates our
approach's superiority in diverse scenarios, setting a new benchmark in
zero-shot point cloud classification.
Related papers
- Point Cloud Understanding via Attention-Driven Contrastive Learning [64.65145700121442]
Transformer-based models have advanced point cloud understanding by leveraging self-attention mechanisms.
PointACL is an attention-driven contrastive learning framework designed to address these limitations.
Our method employs an attention-driven dynamic masking strategy that guides the model to focus on under-attended regions.
arXiv Detail & Related papers (2024-11-22T05:41:00Z) - GPT4Vis: What Can GPT-4 Do for Zero-shot Visual Recognition? [82.40761196684524]
This paper centers on the evaluation of GPT-4's linguistic and visual capabilities in zero-shot visual recognition tasks.
We conduct extensive experiments to evaluate GPT-4's performance across images, videos, and point clouds.
Our findings show that GPT-4, enhanced with rich linguistic descriptions, significantly improves zero-shot recognition.
arXiv Detail & Related papers (2023-11-27T11:29:10Z) - GPT-4V-AD: Exploring Grounding Potential of VQA-oriented GPT-4V for Zero-shot Anomaly Detection [51.43589678946244]
This paper explores the potential of VQA-oriented GPT-4V in the popular visual Anomaly Detection (AD) task.
It is the first to conduct qualitative and quantitative evaluations on the popular MVTec AD and VisA datasets.
arXiv Detail & Related papers (2023-11-05T10:01:18Z) - The Dawn of LMMs: Preliminary Explorations with GPT-4V(ision) [121.42924593374127]
We analyze the latest model, GPT-4V, to deepen the understanding of LMMs.
GPT-4V's unprecedented ability in processing arbitrarily interleaved multimodal inputs makes it a powerful multimodal generalist system.
GPT-4V's unique capability of understanding visual markers drawn on input images can give rise to new human-computer interaction methods.
arXiv Detail & Related papers (2023-09-29T17:34:51Z) - Edge Aware Learning for 3D Point Cloud [8.12405696290333]
This paper proposes an innovative approach to Hierarchical Edge Aware 3D Point Cloud Learning (HEA-Net)
It seeks to address the challenges of noise in point cloud data, and improve object recognition and segmentation by focusing on edge features.
We present an innovative edge-aware learning methodology, specifically designed to enhance point cloud classification and segmentation.
arXiv Detail & Related papers (2023-09-23T20:12:32Z) - PointGPT: Auto-regressively Generative Pre-training from Point Clouds [45.488532108226565]
We present PointGPT, a novel approach that extends the concept of GPT to point clouds.
Specifically, a point cloud auto-regressive generation task is proposed to pre-train transformer models.
Our approach achieves classification accuracies of 94.9% on the ModelNet40 dataset and 93.4% on the ScanObjectNN dataset, outperforming all other transformer models.
arXiv Detail & Related papers (2023-05-19T07:39:04Z) - Can GPT-4 Perform Neural Architecture Search? [56.98363718371614]
We investigate the potential of GPT-4 to perform Neural Architecture Search (NAS)
Our proposed approach, textbfGPT-4 textbfEnhanced textbfNeural archtextbfItecttextbfUre textbfSearch (GENIUS)
We assess GENIUS across several benchmarks, comparing it with existing state-of-the-art NAS techniques to illustrate its effectiveness.
arXiv Detail & Related papers (2023-04-21T14:06:44Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.