論文の概要: Federated Learning for Predictive Maintenance and Quality Inspection in
Industrial Applications
- arxiv url: http://arxiv.org/abs/2304.11101v1
- Date: Fri, 21 Apr 2023 16:11:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-24 14:05:55.631846
- Title: Federated Learning for Predictive Maintenance and Quality Inspection in
Industrial Applications
- Title(参考訳): 産業応用における予測保守・品質検査のためのフェデレーション学習
- Authors: Viktorija Pruckovskaja, Axel Weissenfeld, Clemens Heistracher, Anita
Graser, Julia Kafka, Peter Leputsch, Daniel Schall, Jana Kemnitz
- Abstract要約: フェデレーション・ラーニング(FL)は、複数の参加者がデータのプライバシと機密性を損なうことなく、機械学習モデルを開発することを可能にする。
FLアグリゲーション法の性能評価を行い,それらを中央および局所的な訓練手法と比較した。
実世界の品質検査環境から新しいフェデレーション学習データセットを導入する。
- 参考スコア(独自算出の注目度): 0.36855408155998204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Data-driven machine learning is playing a crucial role in the advancements of
Industry 4.0, specifically in enhancing predictive maintenance and quality
inspection. Federated learning (FL) enables multiple participants to develop a
machine learning model without compromising the privacy and confidentiality of
their data. In this paper, we evaluate the performance of different FL
aggregation methods and compare them to central and local training approaches.
Our study is based on four datasets with varying data distributions. The
results indicate that the performance of FL is highly dependent on the data and
its distribution among clients. In some scenarios, FL can be an effective
alternative to traditional central or local training methods. Additionally, we
introduce a new federated learning dataset from a real-world quality inspection
setting.
- Abstract(参考訳): データ駆動機械学習は、特に予測メンテナンスと品質検査の強化において、業界4.0の発展において重要な役割を担っている。
フェデレーション学習(fl)は、複数の参加者が、データのプライバシーと機密性を損なうことなく、マシンラーニングモデルの開発を可能にする。
本稿では,異なるfl集約手法の性能を評価し,それらを中央訓練および局所訓練法と比較する。
本研究は,データ分布の異なる4つのデータセットに基づく。
その結果,flの性能はデータとクライアント間の分散に大きく依存することがわかった。
いくつかのシナリオでは、FLは従来の中央訓練法や局所訓練法に代わる効果的な代替となる。
さらに,実世界の品質検査環境から新たなフェデレーション学習データセットを導入する。
関連論文リスト
- Can We Theoretically Quantify the Impacts of Local Updates on the Generalization Performance of Federated Learning? [50.03434441234569]
フェデレートラーニング(FL)は、直接データ共有を必要とせず、さまざまなサイトで機械学習モデルをトレーニングする効果により、大きな人気を集めている。
局所的な更新を伴うFLは通信効率のよい分散学習フレームワークであることが様々なアルゴリズムによって示されているが、局所的な更新によるFLの一般化性能は比較的低い。
論文 参考訳(メタデータ) (2024-09-05T19:00:18Z) - Enhancing Data Quality in Federated Fine-Tuning of Foundation Models [54.757324343062734]
本稿では,基礎モデルのファインチューニングのためのデータ品質制御パイプラインを提案する。
このパイプラインは、トレーニングデータの質を反映したスコアを計算し、統一された標準のグローバルしきい値を決定する。
実験の結果,提案した品質制御パイプラインはモデルトレーニングの有効性と信頼性を向上し,性能が向上することが示された。
論文 参考訳(メタデータ) (2024-03-07T14:28:04Z) - A Survey on Efficient Federated Learning Methods for Foundation Model Training [62.473245910234304]
フェデレーテッド・ラーニング(FL)は、多数のクライアントにわたるプライバシー保護協調トレーニングを促進するための確立した技術となっている。
Foundation Models (FM)の後、多くのディープラーニングアプリケーションでは現実が異なる。
FLアプリケーションに対するパラメータ効率細調整(PEFT)の利点と欠点について論じる。
論文 参考訳(メタデータ) (2024-01-09T10:22:23Z) - Data Valuation and Detections in Federated Learning [4.899818550820576]
フェデレートラーニング(FL)は、生データのプライバシーを維持しながら協調的なモデルトレーニングを可能にする。
このフレームワークの課題は、データの公平かつ効率的な評価であり、FLタスクで高品質なデータを提供するためにクライアントにインセンティブを与えるのに不可欠である。
本稿では,FLタスクにおける事前学習アルゴリズムを使わずに,クライアントのコントリビューションを評価し,関連するデータセットを選択するための新たなプライバシ保護手法を提案する。
論文 参考訳(メタデータ) (2023-11-09T12:01:32Z) - Federated Multilingual Models for Medical Transcript Analysis [11.877236847857336]
大規模多言語モデルを学習するための連合学習システムを提案する。
トレーニングデータはすべて、中央に送信されることはない。
本研究では,グローバルモデルの性能を,局所的に行うトレーニングステップによってさらに向上させることができることを示す。
論文 参考訳(メタデータ) (2022-11-04T01:07:54Z) - Federated Learning and Meta Learning: Approaches, Applications, and
Directions [94.68423258028285]
本稿では,FL,メタラーニング,フェデレーションメタラーニング(FedMeta)について概観する。
他のチュートリアルと異なり、私たちの目標はFL、メタラーニング、FedMetaの方法論をどのように設計、最適化、進化させ、無線ネットワーク上で応用するかを探ることです。
論文 参考訳(メタデータ) (2022-10-24T10:59:29Z) - Online Data Selection for Federated Learning with Limited Storage [53.46789303416799]
ネットワークデバイス間での分散機械学習を実現するために、フェデレートラーニング(FL)が提案されている。
デバイス上のストレージがFLの性能に与える影響はまだ調査されていない。
本研究では,デバイス上のストレージを限定したFLのオンラインデータ選択について検討する。
論文 参考訳(メタデータ) (2022-09-01T03:27:33Z) - On the Importance and Applicability of Pre-Training for Federated
Learning [28.238484580662785]
我々は,連合学習のための事前学習を体系的に研究する。
事前学習はFLを改善するだけでなく,その精度のギャップを集中学習に埋めることもできる。
本論文は,FLに対する事前学習の効果を解明する試みとしてまとめる。
論文 参考訳(メタデータ) (2022-06-23T06:02:33Z) - Improving Accuracy of Federated Learning in Non-IID Settings [11.908715869667445]
Federated Learning(FL)は、データを共有することなく、参加するエージェントのセットが協力してモデルをトレーニングできる、分散機械学習プロトコルである。
FLの性能はエージェントの局所的なデータ分布と密接に関連していることが観察されている。
本研究では,FLに付加的な通信オーバーヘッドを発生させることなく,訓練されたモデルの性能を向上させるための4つの簡単な手法を同定する。
論文 参考訳(メタデータ) (2020-10-14T21:02:14Z) - A Principled Approach to Data Valuation for Federated Learning [73.19984041333599]
フェデレートラーニング(FL)は、分散データソース上で機械学習(ML)モデルをトレーニングする一般的なテクニックである。
Shapley value (SV) はデータ値の概念として多くのデシラタを満たすユニークなペイオフスキームを定義する。
本稿では,FL に対応する SV の変種を提案する。
論文 参考訳(メタデータ) (2020-09-14T04:37:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。