Single site-controlled inverted pyramidal InGaAs QD-nanocavity operating
at the onset of the strong coupling regime
- URL: http://arxiv.org/abs/2304.11258v2
- Date: Tue, 5 Dec 2023 12:13:07 GMT
- Title: Single site-controlled inverted pyramidal InGaAs QD-nanocavity operating
at the onset of the strong coupling regime
- Authors: Jiahui Huang, Wei Liu, Xiang Cheng, Alessio Miranda, Benjamin Dwir,
Alok Rudra, Eli Kapon, Chee Wei Wong
- Abstract summary: Single site-controlled inverted pyramidal InGaAs QD at the antinode of a GaAs photonic crystal cavity offers great promise for practical on-chip photonic quantum information processing.
Here, we reveal the onset of phonon-mediated coherent exciton-photon interaction on our tailored single site-controlled InGaAs QD.
- Score: 15.529347711119406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Precise positioning of single site-controlled inverted pyramidal InGaAs QD at
the antinode of a GaAs photonic crystal cavity with nanometer-scale accuracy
holds unique advantages compared to self-assembled QDs and offers great promise
for practical on-chip photonic quantum information processing. However, the
strong coupling regime in this geometry has not yet been achieved due to the
low cavity Q-factor based on the (111)B-oriented membrane structures. Here, we
reveal the onset of phonon-mediated coherent exciton-photon interaction on our
tailored single site-controlled InGaAs QD - photonic crystal cavity. Our
results present a Rabi-like oscillation of luminescence intensity between
excitonic and photonic components correlated with their energy splitting
pronounced at small detuning. Such Rabi-like oscillation is well reproduced by
modeling the coherent exchange of the exciton-photon population. The modeling
further reveals an oscillatory two-time covariance at QD-cavity resonance,
which indicates that the system operates at the onset of the strong coupling
regime. Moreover, by using the cavity mode as a probe of the virtual state of
the QD induced by phonon scattering, it reveals an increase in phonon
scattering rates near the QD-cavity resonance and asymmetric phonon emission
and absorption rate even around 50 K.
Related papers
- One-dimensional photonic wire as a single-photon source: Implications of cavity QED to a phonon bath of reduced dimensionality [0.0]
This work investigates the phonon-induced decoherence for a quantum dot placed in the one-dimensional system of a homogeneous cylindrical nanowire.
Under a polaron approach, we derive an analytical expression for the 1D pure dephasing rate, which leads to a reduced pure dephasing rate compared with bulk.
arXiv Detail & Related papers (2024-07-19T17:04:03Z) - Site-Controlled Purcell-Induced Bright Single Photon Emitters in Hexagonal Boron Nitride [62.170141783047974]
Single photon emitters hosted in hexagonal boron nitride (hBN) are essential building blocks for quantum photonic technologies that operate at room temperature.
We experimentally demonstrate large-area arrays of plasmonic nanoresonators for Purcell-induced site-controlled SPEs.
Our results offer arrays of bright, heterogeneously integrated quantum light sources, paving the way for robust and scalable quantum information systems.
arXiv Detail & Related papers (2024-05-03T23:02:30Z) - Directional spontaneous emission in photonic crystal slabs [49.1574468325115]
Spontaneous emission is a fundamental out-of-equilibrium process in which an excited quantum emitter relaxes to the ground state due to quantum fluctuations.
One way to modify these photon-mediated interactions is to alter the dipole radiation patterns of the emitter, e.g., by placing photonic crystals near them.
Our study delves into the interaction between these directional emission patterns and the aforementioned variables, revealing the untapped potential to fine-tune collective quantum optical phenomena.
arXiv Detail & Related papers (2023-12-04T15:35:41Z) - Post-fabrication tuning of circular Bragg resonators for enhanced
emitter-cavity coupling [0.0]
We show that an initial spectral mismatch can be corrected after device fabrication by repeated wet chemical etching steps.
We demonstrate 16 nm wavelength tuning for optical modes in AlGaAs resonators on oxide, leading to a 4-fold enhancement of the emission of single embedded GaAs quantum dots.
arXiv Detail & Related papers (2023-09-27T17:21:13Z) - Dissipative stabilization of maximal entanglement between non-identical
emitters via two-photon excitation [49.1574468325115]
Two non-identical quantum emitters, when placed within a cavity and coherently excited at the two-photon resonance, can reach stationary states of nearly maximal entanglement.
We show that this mechanism is merely one among a complex family of phenomena that can generate both stationary and metastable entanglement when driving the emitters at the two-photon resonance.
arXiv Detail & Related papers (2023-06-09T16:49:55Z) - Observation of large spontaneous emission rate enhancement of quantum
dots in a broken-symmetry slow-light waveguide [0.0]
We demonstrate a nanophotonic waveguide platform with embedded quantum dots (QDs)
The design uses slow-light effects in a glide-plane photonic crystal waveguide with QD tuning to match the emission frequency to the slow-light region.
We then demonstrate a 5 fold Purcell enhancement for a dot with high degree of chiral coupling to waveguide modes.
arXiv Detail & Related papers (2022-08-12T18:42:16Z) - Silicon nitride waveguides with intrinsic single-photon emitters for
integrated quantum photonics [97.5153823429076]
We show the first successful coupling of photons from intrinsic single-photon emitters in SiN to monolithically integrated waveguides made of the same material.
Results pave the way toward the realization of scalable, technology-ready quantum photonic integrated circuitry.
arXiv Detail & Related papers (2022-05-17T16:51:29Z) - Exciton-photon complexes and dynamics in the concurrent strong-weak
coupling regime of singular site-controlled cavity quantum electrodynamics [13.810406780342314]
We investigate the exciton complexes photoluminescence, dynamics and photon statistics in the concurrent strong weak coupling regime.
We demonstrate the strong and weak coupling can coexist dynamically, as a form of intermediate regime mediated by phonon scattering.
This study suggests our device has potential for new and subtle cavity quantum electrodynamical phenomena, cavity enhanced indistinguishable single photon generation, and cluster state generation via the exciton-photon complexes for quantum networks.
arXiv Detail & Related papers (2021-07-14T07:21:57Z) - Cavity Quantum Electrodynamics Design with Single Photon Emitters in
Hexagonal Boron Nitride [6.352389759470726]
We numerically investigate the cavity quantum electrodynamics (cavity-QED) scheme incorporating defect-enabled single photon emitters in h-BN microdisk resonators.
The whispering-gallery nature of microdisks can support multiple families of cavity resonances with different radial and azimuthal mode indices simultaneously.
This study contributes toward realizing h-BN photonic components, such as low-threshold microcavity lasers and high-purity single photon sources.
arXiv Detail & Related papers (2021-06-05T21:53:44Z) - Tunable Anderson Localization of Dark States [146.2730735143614]
We experimentally study Anderson localization in a superconducting waveguide quantum electrodynamics system.
We observe an exponential suppression of the transmission coefficient in the vicinity of its subradiant dark modes.
The experiment opens the door to the study of various localization phenomena on a new platform.
arXiv Detail & Related papers (2021-05-25T07:52:52Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.