論文の概要: A Deep Neural Network Deployment Based on Resistive Memory Accelerator
Simulation
- arxiv url: http://arxiv.org/abs/2304.11337v1
- Date: Sat, 22 Apr 2023 07:29:02 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 19:08:13.904080
- Title: A Deep Neural Network Deployment Based on Resistive Memory Accelerator
Simulation
- Title(参考訳): 抵抗型メモリ加速器シミュレーションに基づくディープニューラルネットワークの展開
- Authors: Tejaswanth Reddy Maram, Ria Barnwal, Dr. Bindu B
- Abstract要約: 本研究の目的は、Resistive RAM(ReRAM)内でディープニューラルネットワーク(DNN)をトレーニングする過程を説明することである。
CrossSim APIは、ソリューションの正確性に影響を与える可能性のある要因を考慮して、ニューラルネットワークをシミュレートするように設計されている。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this study is to illustrate the process of training a Deep
Neural Network (DNN) within a Resistive RAM (ReRAM) Crossbar-based simulation
environment using CrossSim, an Application Programming Interface (API)
developed for this purpose. The CrossSim API is designed to simulate neural
networks while taking into account factors that may affect the accuracy of
solutions during training on non-linear and noisy ReRAM devices. ReRAM-based
neural cores that serve as memory accelerators for digital cores on a chip can
significantly reduce energy consumption by minimizing data transfers between
the processor and SRAM and DRAM. CrossSim employs lookup tables obtained from
experimentally derived datasets of real fabricated ReRAM devices to digitally
reproduce noisy weight updates to the neural network. The CrossSim directory
comprises eight device configurations that operate at different temperatures
and are made of various materials. This study aims to analyse the results of
training a Neural Network on the Breast Cancer Wisconsin (Diagnostic) dataset
using CrossSim, plotting the innercore weight updates and average training and
validation loss to investigate the outcomes of all the devices.
- Abstract(参考訳): 本研究の目的は、アプリケーションプログラミングインタフェース(API)であるCrossSimを用いて、Resistive RAM(ReRAM)クロスバーベースのシミュレーション環境において、ディープニューラルネットワーク(DNN)をトレーニングする過程を説明することである。
crosssim apiは、非線形およびノイズの多いreramデバイスでのトレーニング中の解の正確性に影響を与える要因を考慮して、ニューラルネットワークをシミュレートするように設計されている。
チップ上のデジタルコアのメモリアクセラレータとして機能するReRAMベースのニューラルコアは、プロセッサとSRAMとDRAM間のデータ転送を最小限にすることで、消費電力を大幅に削減することができる。
CrossSimは、実製造されたReRAMデバイスの実験的に導出されたデータセットから得られるルックアップテーブルを使用して、ニューラルネットワークのノイズの多い重量更新をデジタルに再現する。
CrossSimディレクトリは8つのデバイス構成で構成されており、異なる温度で動作する。
本研究の目的は、CrossSimを用いた乳がんウィスコンシン州(Diagnostic)データセット上でニューラルネットワークをトレーニングした結果を分析し、インナーコアウェイト更新と平均トレーニングとバリデーション損失をプロットして、すべてのデバイスの結果を調べることである。
関連論文リスト
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
ニューロモルフィックコンピューティングでは、スパイクニューラルネットワーク(SNN)が推論タスクを実行し、シーケンシャルデータを含むワークロードの大幅な効率向上を提供する。
ハードウェアとソフトウェアの最近の進歩は、スパイクニューロン間で交換された各スパイクに数ビットのペイロードを埋め込むことにより、推論精度をさらに高めることを示した。
本稿では,マルチレベルSNNを用いた無線ニューロモルフィック分割計算アーキテクチャについて検討する。
論文 参考訳(メタデータ) (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - Neuromorphic Circuit Simulation with Memristors: Design and Evaluation Using MemTorch for MNIST and CIFAR [0.4077787659104315]
本研究は,3つのデジタル畳み込みニューラルネットワークを構築し,訓練することにより,メモリ内処理にmemristorsを用いることの可能性を評価する。
これらのネットワークをmemtorchシステムに変換する。
シミュレーションは理想的な条件下で行われ、推論中に最小1%の精度の損失が得られた。
論文 参考訳(メタデータ) (2024-07-18T11:30:33Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
我々は、リアルタイムイベントベーススパイキングニューラルネットワーク(SNN)をプロトタイピングするための、脳にインスパイアされたプラットフォームを提案する。
提案システムは, 短期可塑性, NMDA ゲーティング, AMPA拡散, ホメオスタシス, スパイク周波数適応, コンダクタンス系デンドライトコンパートメント, スパイク伝達遅延などの動的および現実的なニューラル処理現象の直接エミュレーションを支援する。
異なる生物学的に可塑性のニューラルネットワークをエミュレートする柔軟性と、個体群と単一ニューロンの信号の両方をリアルタイムで監視する能力により、基礎研究とエッジコンピューティングの両方への応用のための複雑なニューラルネットワークモデルの開発と検証が可能になる。
論文 参考訳(メタデータ) (2023-10-01T03:48:16Z) - CIMulator: A Comprehensive Simulation Platform for Computing-In-Memory
Circuit Macros with Low Bit-Width and Real Memory Materials [0.5325753548715747]
本稿では,ニューロモルフィック加速器における各種シナプスデバイスの有効性を定量化するためのシミュレーションプラットフォーム,CIMulatorを提案する。
抵抗性ランダムアクセスメモリ、強誘電体電界効果トランジスタ、揮発性静的ランダムアクセスメモリ装置などの不揮発性メモリ装置をシナプスデバイスとして選択することができる。
LeNet-5、VGG-16、C4W-1と呼ばれるカスタムCNNのような多層パーセプトロンと畳み込みニューラルネットワーク(CNN)をシミュレートし、これらのシナプスデバイスがトレーニングおよび推論結果に与える影響を評価する。
論文 参考訳(メタデータ) (2023-06-26T12:36:07Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
リソグラフィーモデリングは、チップ設計マスクが製造可能であることを保証するため、チップ設計において重要な問題である。
機械学習の最近の進歩は、時間を要するリソグラフィーシミュレーションをディープニューラルネットワークに置き換えるための代替ソリューションを提供している。
本稿では,限られたデータのジレンマを解消し,機械学習モデルの性能を向上させるために,データ拡張フレームワークを提案する。
論文 参考訳(メタデータ) (2022-10-27T20:53:39Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
本研究では, 人工ニューラルネットワークモデルを用いて, 嵐の軌跡/規模/強度履歴に基づいて, 強風をエミュレートする能力について検討する。
本研究では, 人工嵐シミュレーションのデータベースを用いて, 強風を予測できるニューラルネットワークモデルを提案する。
論文 参考訳(メタデータ) (2022-04-18T23:42:18Z) - Online Training of Spiking Recurrent Neural Networks with Phase-Change
Memory Synapses [1.9809266426888898]
専用のニューロモルフィックハードウェア上でのスパイクニューラルネットワーク(RNN)のトレーニングは、依然としてオープンな課題である。
本稿では,PCMデバイスモデルに基づく差分構造アレイのシミュレーションフレームワークを提案する。
我々は,最近提案されたe-prop学習規則を用いて,提案したシミュレーションフレームワークに重みをエミュレートしたスパイクRNNを訓練する。
論文 参考訳(メタデータ) (2021-08-04T01:24:17Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
本稿では,勾配降下による終端から終端までのアナログニューラルネットワークの学習法を提案する。
数学的には、アナログニューラルネットワークのクラス(非線形抵抗性ネットワークと呼ばれる)がエネルギーベースモデルであることが示される。
我々の研究は、オンチップ学習をサポートする、超高速でコンパクトで低消費電力のニューラルネットワークの新世代の開発を導くことができる。
論文 参考訳(メタデータ) (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
高速で低エネルギーのコンピュータは、エッジでリアルタイム人工知能を実現するために要求されている。
ワンステップ学習は、ボストンの住宅のコスト予測と、MNIST桁認識のための2層ニューラルネットワークのトレーニングによって支援される。
結果は、クロスポイントアレイ内の物理計算、並列計算、アナログ計算のおかげで、1つの計算ステップで得られる。
論文 参考訳(メタデータ) (2020-05-05T08:00:07Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。