論文の概要: Neuromorphic Circuit Simulation with Memristors: Design and Evaluation Using MemTorch for MNIST and CIFAR
- arxiv url: http://arxiv.org/abs/2407.13410v1
- Date: Thu, 18 Jul 2024 11:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-19 15:40:38.466299
- Title: Neuromorphic Circuit Simulation with Memristors: Design and Evaluation Using MemTorch for MNIST and CIFAR
- Title(参考訳): メムリスタを用いたニューロモルフィック回路シミュレーション:MNISTとCIFARのためのMemTorchを用いた設計と評価
- Authors: Julio Souto, Guillermo Botella, Daniel García, Raúl Murillo, Alberto del Barrio,
- Abstract要約: 本研究は,3つのデジタル畳み込みニューラルネットワークを構築し,訓練することにより,メモリ内処理にmemristorsを用いることの可能性を評価する。
これらのネットワークをmemtorchシステムに変換する。
シミュレーションは理想的な条件下で行われ、推論中に最小1%の精度の損失が得られた。
- 参考スコア(独自算出の注目度): 0.4077787659104315
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Memristors offer significant advantages as in-memory computing devices due to their non-volatility, low power consumption, and history-dependent conductivity. These attributes are particularly valuable in the realm of neuromorphic circuits for neural networks, which currently face limitations imposed by the Von Neumann architecture and high energy demands. This study evaluates the feasibility of using memristors for in-memory processing by constructing and training three digital convolutional neural networks with the datasets MNIST, CIFAR10 and CIFAR100. Subsequent conversion of these networks into memristive systems was performed using Memtorch. The simulations, conducted under ideal conditions, revealed minimal precision losses of nearly 1% during inference. Additionally, the study analyzed the impact of tile size and memristor-specific non-idealities on performance, highlighting the practical implications of integrating memristors in neuromorphic computing systems. This exploration into memristive neural network applications underscores the potential of Memtorch in advancing neuromorphic architectures.
- Abstract(参考訳): Memristorは、不揮発性、低消費電力、履歴に依存した導電性のため、インメモリコンピューティングデバイスとして大きな利点を提供する。
これらの特性はニューラルネットワークのニューロモルフィック回路の領域で特に有用であり、現在はフォン・ノイマンのアーキテクチャや高エネルギー要求による制限に直面している。
本研究は,MNIST, CIFAR10, CIFAR100を用いて3つのデジタル畳み込みニューラルネットワークを構築し, 訓練することにより, メモリ内処理におけるmemristorsの使用の可能性を評価する。
その後、Memtorchを用いて、これらのネットワークをmemristiveシステムに変換した。
シミュレーションは理想的な条件下で行われ、推論中に最小1%の精度の損失が得られた。
さらに、本研究では、タイルサイズと膜型非イデオロギーがパフォーマンスに与える影響を分析し、神経形コンピューティングシステムにおける膜型コンピュータの統合の実践的意義を強調した。
この経験的ニューラルネットワーク応用の探索は、ニューロモルフィックアーキテクチャの進展におけるMemtorchの可能性を強調している。
関連論文リスト
- A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANAは、混合信号ニューロモルフィック回路の特性を考慮に入れたスパイクニューラルネットワークシミュレータである。
その結果,ソフトウェアでトレーニングしたスパイクニューラルネットワークの挙動を,信頼性の高い推定結果として提示した。
論文 参考訳(メタデータ) (2024-09-23T11:16:46Z) - EvSegSNN: Neuromorphic Semantic Segmentation for Event Data [0.6138671548064356]
EvSegSNN は、Parametric Leaky Integrate と Fire のニューロンに依存した、生物学的に検証可能なエンコーダ-デコーダU字型アーキテクチャである。
本稿では,スパイキングニューラルネットワークとイベントカメラを組み合わせることによって,エンド・ツー・エンドのバイオインスパイアされたセマンティックセマンティックセマンティクス手法を提案する。
DDD17で実施された実験は、EvSegSNNがMIoUの観点から最も近い最先端モデルを上回っていることを示している。
論文 参考訳(メタデータ) (2024-06-20T10:36:24Z) - EPIM: Efficient Processing-In-Memory Accelerators based on Epitome [78.79382890789607]
畳み込みのような機能を提供する軽量神経オペレータであるEpitomeを紹介する。
ソフトウェア側では,PIMアクセラレータ上でのエピトームのレイテンシとエネルギを評価する。
ハードウェア効率を向上させるため,PIM対応層設計手法を提案する。
論文 参考訳(メタデータ) (2023-11-12T17:56:39Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - CIMulator: A Comprehensive Simulation Platform for Computing-In-Memory
Circuit Macros with Low Bit-Width and Real Memory Materials [0.5325753548715747]
本稿では,ニューロモルフィック加速器における各種シナプスデバイスの有効性を定量化するためのシミュレーションプラットフォーム,CIMulatorを提案する。
抵抗性ランダムアクセスメモリ、強誘電体電界効果トランジスタ、揮発性静的ランダムアクセスメモリ装置などの不揮発性メモリ装置をシナプスデバイスとして選択することができる。
LeNet-5、VGG-16、C4W-1と呼ばれるカスタムCNNのような多層パーセプトロンと畳み込みニューラルネットワーク(CNN)をシミュレートし、これらのシナプスデバイスがトレーニングおよび推論結果に与える影響を評価する。
論文 参考訳(メタデータ) (2023-06-26T12:36:07Z) - The Expressive Leaky Memory Neuron: an Efficient and Expressive Phenomenological Neuron Model Can Solve Long-Horizon Tasks [64.08042492426992]
本稿では,脳皮質ニューロンの生物学的モデルであるExpressive Memory(ELM)ニューロンモデルを紹介する。
ELMニューロンは、上記の入力-出力関係を1万以下のトレーニング可能なパラメータと正確に一致させることができる。
本稿では,Long Range Arena(LRA)データセットなど,時間構造を必要とするタスクで評価する。
論文 参考訳(メタデータ) (2023-06-14T13:34:13Z) - A Deep Neural Network Deployment Based on Resistive Memory Accelerator
Simulation [0.0]
本研究の目的は、Resistive RAM(ReRAM)内でディープニューラルネットワーク(DNN)をトレーニングする過程を説明することである。
CrossSim APIは、ソリューションの正確性に影響を与える可能性のある要因を考慮して、ニューラルネットワークをシミュレートするように設計されている。
論文 参考訳(メタデータ) (2023-04-22T07:29:02Z) - Gradient-based Neuromorphic Learning on Dynamical RRAM Arrays [3.5969667977870796]
我々は,完全分裂型スパイクニューラルネットワーク(MSNN)を学習するための勾配学習(MEMprop)を提案する。
本手法では, 自然に発生する電圧スパイクを発生させるために, 固有デバイスダイナミクスを利用する。
いくつかのベンチマークにおいて、以前報告した軽量高密度完全MSNN間の高い競争精度を得る。
論文 参考訳(メタデータ) (2022-06-26T23:13:34Z) - Modeling from Features: a Mean-field Framework for Over-parameterized
Deep Neural Networks [54.27962244835622]
本稿では、オーバーパラメータ化ディープニューラルネットワーク(DNN)のための新しい平均場フレームワークを提案する。
このフレームワークでは、DNNは連続的な極限におけるその特徴に対する確率測度と関数によって表現される。
本稿では、標準DNNとResidual Network(Res-Net)アーキテクチャを通してフレームワークを説明する。
論文 参考訳(メタデータ) (2020-07-03T01:37:16Z) - Ultra-Low-Power FDSOI Neural Circuits for Extreme-Edge Neuromorphic
Intelligence [2.6199663901387997]
インメモリコンピューティング 混合信号ニューロモルフィックアーキテクチャはエッジコンピューティングのセンサ処理への応用に期待できる超低消費電力のソリューションを提供する。
本稿では、FDSOI(Fully-Depleted Silicon on Insulator)統合プロセスの特徴を利用する混合信号アナログ/デジタル回路を提案する。
論文 参考訳(メタデータ) (2020-06-25T09:31:29Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
我々は、ニューラルネットワークの有意義な表現を見つけるためにオートエンコーダを用いる。
アーキテクチャの性能を予測するために、グラフ畳み込みニューラルネットワークを導入する。
論文 参考訳(メタデータ) (2020-05-14T09:02:33Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。