A Deep Neural Network Deployment Based on Resistive Memory Accelerator
Simulation
- URL: http://arxiv.org/abs/2304.11337v1
- Date: Sat, 22 Apr 2023 07:29:02 GMT
- Title: A Deep Neural Network Deployment Based on Resistive Memory Accelerator
Simulation
- Authors: Tejaswanth Reddy Maram, Ria Barnwal, Dr. Bindu B
- Abstract summary: The objective of this study is to illustrate the process of training a Deep Neural Network (DNN) within a Resistive RAM (ReRAM)
The CrossSim API is designed to simulate neural networks while taking into account factors that may affect the accuracy of solutions.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The objective of this study is to illustrate the process of training a Deep
Neural Network (DNN) within a Resistive RAM (ReRAM) Crossbar-based simulation
environment using CrossSim, an Application Programming Interface (API)
developed for this purpose. The CrossSim API is designed to simulate neural
networks while taking into account factors that may affect the accuracy of
solutions during training on non-linear and noisy ReRAM devices. ReRAM-based
neural cores that serve as memory accelerators for digital cores on a chip can
significantly reduce energy consumption by minimizing data transfers between
the processor and SRAM and DRAM. CrossSim employs lookup tables obtained from
experimentally derived datasets of real fabricated ReRAM devices to digitally
reproduce noisy weight updates to the neural network. The CrossSim directory
comprises eight device configurations that operate at different temperatures
and are made of various materials. This study aims to analyse the results of
training a Neural Network on the Breast Cancer Wisconsin (Diagnostic) dataset
using CrossSim, plotting the innercore weight updates and average training and
validation loss to investigate the outcomes of all the devices.
Related papers
- Neuromorphic Wireless Split Computing with Multi-Level Spikes [69.73249913506042]
In neuromorphic computing, spiking neural networks (SNNs) perform inference tasks, offering significant efficiency gains for workloads involving sequential data.
Recent advances in hardware and software have demonstrated that embedding a few bits of payload in each spike exchanged between the spiking neurons can further enhance inference accuracy.
This paper investigates a wireless neuromorphic split computing architecture employing multi-level SNNs.
arXiv Detail & Related papers (2024-11-07T14:08:35Z) - A Realistic Simulation Framework for Analog/Digital Neuromorphic Architectures [73.65190161312555]
ARCANA is a spiking neural network simulator designed to account for the properties of mixed-signal neuromorphic circuits.
We show how the results obtained provide a reliable estimate of the behavior of the spiking neural network trained in software.
arXiv Detail & Related papers (2024-09-23T11:16:46Z) - Neuromorphic Circuit Simulation with Memristors: Design and Evaluation Using MemTorch for MNIST and CIFAR [0.4077787659104315]
This study evaluates the feasibility of using memristors for in-memory processing by constructing and training three digital convolutional neural networks.
Conversion of these networks into memristive systems was performed using Memtorch.
The simulations, conducted under ideal conditions, revealed minimal precision losses of nearly 1% during inference.
arXiv Detail & Related papers (2024-07-18T11:30:33Z) - DYNAP-SE2: a scalable multi-core dynamic neuromorphic asynchronous
spiking neural network processor [2.9175555050594975]
We present a brain-inspired platform for prototyping real-time event-based Spiking Neural Networks (SNNs)
The system proposed supports the direct emulation of dynamic and realistic neural processing phenomena such as short-term plasticity, NMDA gating, AMPA diffusion, homeostasis, spike frequency adaptation, conductance-based dendritic compartments and spike transmission delays.
The flexibility to emulate different biologically plausible neural networks, and the chip's ability to monitor both population and single neuron signals in real-time, allow to develop and validate complex models of neural processing for both basic research and edge-computing applications.
arXiv Detail & Related papers (2023-10-01T03:48:16Z) - CIMulator: A Comprehensive Simulation Platform for Computing-In-Memory
Circuit Macros with Low Bit-Width and Real Memory Materials [0.5325753548715747]
This paper presents a simulation platform, namely CIMulator, for quantifying the efficacy of various synaptic devices in neuromorphic accelerators.
Non-volatile memory devices, such as resistive random-access memory, ferroelectric field-effect transistor, and volatile static random-access memory devices, can be selected as synaptic devices.
A multilayer perceptron and convolutional neural networks (CNNs), such as LeNet-5, VGG-16, and a custom CNN named C4W-1, are simulated to evaluate the effects of these synaptic devices on the training and inference outcomes.
arXiv Detail & Related papers (2023-06-26T12:36:07Z) - An Adversarial Active Sampling-based Data Augmentation Framework for
Manufacturable Chip Design [55.62660894625669]
Lithography modeling is a crucial problem in chip design to ensure a chip design mask is manufacturable.
Recent developments in machine learning have provided alternative solutions in replacing the time-consuming lithography simulations with deep neural networks.
We propose a litho-aware data augmentation framework to resolve the dilemma of limited data and improve the machine learning model performance.
arXiv Detail & Related papers (2022-10-27T20:53:39Z) - An advanced spatio-temporal convolutional recurrent neural network for
storm surge predictions [73.4962254843935]
We study the capability of artificial neural network models to emulate storm surge based on the storm track/size/intensity history.
This study presents a neural network model that can predict storm surge, informed by a database of synthetic storm simulations.
arXiv Detail & Related papers (2022-04-18T23:42:18Z) - Online Training of Spiking Recurrent Neural Networks with Phase-Change
Memory Synapses [1.9809266426888898]
Training spiking neural networks (RNNs) on dedicated neuromorphic hardware is still an open challenge.
We present a simulation framework of differential-architecture arrays based on an accurate and comprehensive Phase-Change Memory (PCM) device model.
We train a spiking RNN whose weights are emulated in the presented simulation framework, using a recently proposed e-prop learning rule.
arXiv Detail & Related papers (2021-08-04T01:24:17Z) - Training End-to-End Analog Neural Networks with Equilibrium Propagation [64.0476282000118]
We introduce a principled method to train end-to-end analog neural networks by gradient descent.
We show mathematically that a class of analog neural networks (called nonlinear resistive networks) are energy-based models.
Our work can guide the development of a new generation of ultra-fast, compact and low-power neural networks supporting on-chip learning.
arXiv Detail & Related papers (2020-06-02T23:38:35Z) - One-step regression and classification with crosspoint resistive memory
arrays [62.997667081978825]
High speed, low energy computing machines are in demand to enable real-time artificial intelligence at the edge.
One-step learning is supported by simulations of the prediction of the cost of a house in Boston and the training of a 2-layer neural network for MNIST digit recognition.
Results are all obtained in one computational step, thanks to the physical, parallel, and analog computing within the crosspoint array.
arXiv Detail & Related papers (2020-05-05T08:00:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.