ML-based Approaches for Wireless NLOS Localization: Input
Representations and Uncertainty Estimation
- URL: http://arxiv.org/abs/2304.11396v1
- Date: Sat, 22 Apr 2023 13:13:07 GMT
- Title: ML-based Approaches for Wireless NLOS Localization: Input
Representations and Uncertainty Estimation
- Authors: Rafayel Darbinyan, Hrant Khachatrian, Rafayel Mkrtchyan, Theofanis P.
Raptis
- Abstract summary: Non-line-of-sight (NLOS) localization is critical for many wireless networking applications.
This paper explores three different input representations: (i) single wireless radio path features, (ii) wireless radio link features (multi-path), and (iii) image-based representations.
Inspired by the two latter new representations, we design two convolutional neural networks (CNNs) and we demonstrate that, although not significantly improving the NLOS localization performance, they are able to support richer prediction outputs.
- Score: 2.2748974006378933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The challenging problem of non-line-of-sight (NLOS) localization is critical
for many wireless networking applications. The lack of available datasets has
made NLOS localization difficult to tackle with ML-driven methods, but recent
developments in synthetic dataset generation have provided new opportunities
for research. This paper explores three different input representations: (i)
single wireless radio path features, (ii) wireless radio link features
(multi-path), and (iii) image-based representations. Inspired by the two latter
new representations, we design two convolutional neural networks (CNNs) and we
demonstrate that, although not significantly improving the NLOS localization
performance, they are able to support richer prediction outputs, thus allowing
deeper analysis of the predictions. In particular, the richer outputs enable
reliable identification of non-trustworthy predictions and support the
prediction of the top-K candidate locations for a given instance. We also
measure how the availability of various features (such as angles of signal
departure and arrival) affects the model's performance, providing insights
about the types of data that should be collected for enhanced NLOS
localization. Our insights motivate future work on building more efficient
neural architectures and input representations for improved NLOS localization
performance, along with additional useful application features.
Related papers
- Where Do We Stand with Implicit Neural Representations? A Technical and Performance Survey [16.89460694470542]
Implicit Neural Representations (INRs) have emerged as a paradigm in knowledge representation.
INRs leverage multilayer perceptrons (MLPs) to model data as continuous implicit functions.
This survey introduces a clear taxonomy that categorises them into four key areas: activation functions, position encoding, combined strategies, and network structure.
arXiv Detail & Related papers (2024-11-06T06:14:24Z) - Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - Noise-Resilient Unsupervised Graph Representation Learning via Multi-Hop Feature Quality Estimation [53.91958614666386]
Unsupervised graph representation learning (UGRL) based on graph neural networks (GNNs)
We propose a novel UGRL method based on Multi-hop feature Quality Estimation (MQE)
arXiv Detail & Related papers (2024-07-29T12:24:28Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Leveraging Neural Radiance Fields for Uncertainty-Aware Visual
Localization [56.95046107046027]
We propose to leverage Neural Radiance Fields (NeRF) to generate training samples for scene coordinate regression.
Despite NeRF's efficiency in rendering, many of the rendered data are polluted by artifacts or only contain minimal information gain.
arXiv Detail & Related papers (2023-10-10T20:11:13Z) - Efficient Model Adaptation for Continual Learning at the Edge [15.334881190102895]
Most machine learning (ML) systems assume stationary and matching data distributions during training and deployment.
Data distributions often shift over time due to changes in environmental factors, sensor characteristics, and task-of-interest.
This paper presents theAdaptor-Reconfigurator (EAR) framework for efficient continual learning under domain shifts.
arXiv Detail & Related papers (2023-08-03T23:55:17Z) - Towards Open-World Feature Extrapolation: An Inductive Graph Learning
Approach [80.8446673089281]
We propose a new learning paradigm with graph representation and learning.
Our framework contains two modules: 1) a backbone network (e.g., feedforward neural nets) as a lower model takes features as input and outputs predicted labels; 2) a graph neural network as an upper model learns to extrapolate embeddings for new features via message passing over a feature-data graph built from observed data.
arXiv Detail & Related papers (2021-10-09T09:02:45Z) - Feature Extraction for Machine Learning-based Intrusion Detection in IoT
Networks [6.6147550436077776]
This paper aims to discover whether Feature Reduction (FR) and Machine Learning (ML) techniques can be generalised across various datasets.
The detection accuracy of three Feature Extraction (FE) algorithms; Principal Component Analysis (PCA), Auto-encoder (AE), and Linear Discriminant Analysis (LDA) is evaluated.
arXiv Detail & Related papers (2021-08-28T23:52:18Z) - Contextual HyperNetworks for Novel Feature Adaptation [43.49619456740745]
Contextual HyperNetwork (CHN) generates parameters for extending the base model to a new feature.
At prediction time, the CHN requires only a single forward pass through a neural network, yielding a significant speed-up.
We show that this system obtains improved few-shot learning performance for novel features over existing imputation and meta-learning baselines.
arXiv Detail & Related papers (2021-04-12T23:19:49Z) - Diversity inducing Information Bottleneck in Model Ensembles [73.80615604822435]
In this paper, we target the problem of generating effective ensembles of neural networks by encouraging diversity in prediction.
We explicitly optimize a diversity inducing adversarial loss for learning latent variables and thereby obtain diversity in the output predictions necessary for modeling multi-modal data.
Compared to the most competitive baselines, we show significant improvements in classification accuracy, under a shift in the data distribution.
arXiv Detail & Related papers (2020-03-10T03:10:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.