Causal Effect Estimation with Variational AutoEncoder and the Front Door
Criterion
- URL: http://arxiv.org/abs/2304.11969v1
- Date: Mon, 24 Apr 2023 10:04:28 GMT
- Title: Causal Effect Estimation with Variational AutoEncoder and the Front Door
Criterion
- Authors: Ziqi Xu, Debo Cheng, Jiuyong Li, Jixue Liu, Lin Liu, Kui Yu
- Abstract summary: The front-door criterion is often difficult to identify the set of variables used for front-door adjustment from data.
By leveraging the ability of deep generative models in representation learning, we propose FDVAE to learn the representation of a Front-Door adjustment set with a Variational AutoEncoder.
- Score: 23.20371860838245
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: An essential problem in causal inference is estimating causal effects from
observational data. The problem becomes more challenging with the presence of
unobserved confounders. When there are unobserved confounders, the commonly
used back-door adjustment is not applicable. Although the instrumental variable
(IV) methods can deal with unobserved confounders, they all assume that the
treatment directly affects the outcome, and there is no mediator between the
treatment and the outcome. This paper aims to use the front-door criterion to
address the challenging problem with the presence of unobserved confounders and
mediators. In practice, it is often difficult to identify the set of variables
used for front-door adjustment from data. By leveraging the ability of deep
generative models in representation learning, we propose FDVAE to learn the
representation of a Front-Door adjustment set with a Variational AutoEncoder,
instead of trying to search for a set of variables for front-door adjustment.
Extensive experiments on synthetic datasets validate the effectiveness of FDVAE
and its superiority over existing methods. The experiments also show that the
performance of FDVAE is not sensitive to the causal strength of unobserved
confounders and is feasible in the case of dimensionality mismatch between
learned representations and the ground truth. We further apply the method to
three real-world datasets to demonstrate its potential applications.
Related papers
- Double Machine Learning meets Panel Data -- Promises, Pitfalls, and Potential Solutions [0.0]
Estimating causal effect using machine learning (ML) algorithms can help to relax functional form assumptions if used within appropriate frameworks.
We show how we can adapt machine learning (DML) for panel data in the presence of unobserved heterogeneity.
We also show that the influence of the unobserved heterogeneity on the observed confounders plays a significant role for the performance of most alternative methods.
arXiv Detail & Related papers (2024-09-02T13:59:54Z) - Causal Effect Estimation using identifiable Variational AutoEncoder with Latent Confounders and Post-Treatment Variables [18.34462010115951]
Estimating causal effects from observational data is challenging, especially in the presence of latent confounders.
We propose a novel method of joint Variational AutoEncoder (VAE) and identifiable Variational AutoEncoder (iVAE) for learning the representations of latent confounders and latent post-treatment variables.
arXiv Detail & Related papers (2024-08-13T22:13:25Z) - Self-supervised Feature Adaptation for 3D Industrial Anomaly Detection [59.41026558455904]
We focus on multi-modal anomaly detection. Specifically, we investigate early multi-modal approaches that attempted to utilize models pre-trained on large-scale visual datasets.
We propose a Local-to-global Self-supervised Feature Adaptation (LSFA) method to finetune the adaptors and learn task-oriented representation toward anomaly detection.
arXiv Detail & Related papers (2024-01-06T07:30:41Z) - Unraveling the "Anomaly" in Time Series Anomaly Detection: A
Self-supervised Tri-domain Solution [89.16750999704969]
Anomaly labels hinder traditional supervised models in time series anomaly detection.
Various SOTA deep learning techniques, such as self-supervised learning, have been introduced to tackle this issue.
We propose a novel self-supervised learning based Tri-domain Anomaly Detector (TriAD)
arXiv Detail & Related papers (2023-11-19T05:37:18Z) - Causal Inference with Conditional Front-Door Adjustment and Identifiable
Variational Autoencoder [28.94606676886985]
Front-door adjustment is a practical approach for dealing with unobserved confounding variables.
We develop the theorem that guarantees the causal effect identifiability of CFD adjustment.
We propose CFDiVAE to learn the representation of the CFD adjustment variable directly from data.
arXiv Detail & Related papers (2023-10-03T10:24:44Z) - Nonparametric Identifiability of Causal Representations from Unknown
Interventions [63.1354734978244]
We study causal representation learning, the task of inferring latent causal variables and their causal relations from mixtures of the variables.
Our goal is to identify both the ground truth latents and their causal graph up to a set of ambiguities which we show to be irresolvable from interventional data.
arXiv Detail & Related papers (2023-06-01T10:51:58Z) - Cluster-level pseudo-labelling for source-free cross-domain facial
expression recognition [94.56304526014875]
We propose the first Source-Free Unsupervised Domain Adaptation (SFUDA) method for Facial Expression Recognition (FER)
Our method exploits self-supervised pretraining to learn good feature representations from the target data.
We validate the effectiveness of our method in four adaptation setups, proving that it consistently outperforms existing SFUDA methods when applied to FER.
arXiv Detail & Related papers (2022-10-11T08:24:50Z) - Towards Unbiased Visual Emotion Recognition via Causal Intervention [63.74095927462]
We propose a novel Emotion Recognition Network (IERN) to alleviate the negative effects brought by the dataset bias.
A series of designed tests validate the effectiveness of IERN, and experiments on three emotion benchmarks demonstrate that IERN outperforms other state-of-the-art approaches.
arXiv Detail & Related papers (2021-07-26T10:40:59Z) - Provably Efficient Causal Reinforcement Learning with Confounded
Observational Data [135.64775986546505]
We study how to incorporate the dataset (observational data) collected offline, which is often abundantly available in practice, to improve the sample efficiency in the online setting.
We propose the deconfounded optimistic value iteration (DOVI) algorithm, which incorporates the confounded observational data in a provably efficient manner.
arXiv Detail & Related papers (2020-06-22T14:49:33Z) - NestedVAE: Isolating Common Factors via Weak Supervision [45.366986365879505]
We identify the connection between the task of bias reduction and that of isolating factors common between domains.
To isolate the common factors we combine the theory of deep latent variable models with information bottleneck theory.
Two outer VAEs with shared weights attempt to reconstruct the input and infer a latent space, whilst a nested VAE attempts to reconstruct the latent representation of one image, from the latent representation of its paired image.
arXiv Detail & Related papers (2020-02-26T15:49:57Z) - MissDeepCausal: Causal Inference from Incomplete Data Using Deep Latent
Variable Models [14.173184309520453]
State-of-the-art methods for causal inference don't consider missing values.
Missing data require an adapted unconfoundedness hypothesis.
Latent confounders whose distribution is learned through variational autoencoders adapted to missing values are considered.
arXiv Detail & Related papers (2020-02-25T12:58:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.