Generative Flow Networks for Precise Reward-Oriented Active Learning on
Graphs
- URL: http://arxiv.org/abs/2304.11989v1
- Date: Mon, 24 Apr 2023 10:47:08 GMT
- Title: Generative Flow Networks for Precise Reward-Oriented Active Learning on
Graphs
- Authors: Yinchuan Li, Zhigang Li, Wenqian Li, Yunfeng Shao, Yan Zheng and
Jianye Hao
- Abstract summary: We formulate the graph active learning problem as a generative process, named GFlowGNN, which generates various samples through sequential actions.
We show that the proposed approach has good exploration capability and transferability, outperforming various state-of-the-art methods.
- Score: 34.76241250013461
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many score-based active learning methods have been successfully applied to
graph-structured data, aiming to reduce the number of labels and achieve better
performance of graph neural networks based on predefined score functions.
However, these algorithms struggle to learn policy distributions that are
proportional to rewards and have limited exploration capabilities. In this
paper, we innovatively formulate the graph active learning problem as a
generative process, named GFlowGNN, which generates various samples through
sequential actions with probabilities precisely proportional to a predefined
reward function. Furthermore, we propose the concept of flow nodes and flow
features to efficiently model graphs as flows based on generative flow
networks, where the policy network is trained with specially designed rewards.
Extensive experiments on real datasets show that the proposed approach has good
exploration capability and transferability, outperforming various
state-of-the-art methods.
Related papers
- Distributional GFlowNets with Quantile Flows [73.73721901056662]
Generative Flow Networks (GFlowNets) are a new family of probabilistic samplers where an agent learns a policy for generating complex structure through a series of decision-making steps.
In this work, we adopt a distributional paradigm for GFlowNets, turning each flow function into a distribution, thus providing more informative learning signals during training.
Our proposed textitquantile matching GFlowNet learning algorithm is able to learn a risk-sensitive policy, an essential component for handling scenarios with risk uncertainty.
arXiv Detail & Related papers (2023-02-11T22:06:17Z) - Generative Augmented Flow Networks [88.50647244459009]
We propose Generative Augmented Flow Networks (GAFlowNets) to incorporate intermediate rewards into GFlowNets.
GAFlowNets can leverage edge-based and state-based intrinsic rewards in a joint way to improve exploration.
arXiv Detail & Related papers (2022-10-07T03:33:56Z) - A Complex Network based Graph Embedding Method for Link Prediction [0.0]
We present a novel graph embedding approach based on the popularity-similarity and local attraction paradigms.
We show, using extensive experimental analysis, that the proposed method outperforms state-of-the-art graph embedding algorithms.
arXiv Detail & Related papers (2022-09-11T14:46:38Z) - Optimal Propagation for Graph Neural Networks [51.08426265813481]
We propose a bi-level optimization approach for learning the optimal graph structure.
We also explore a low-rank approximation model for further reducing the time complexity.
arXiv Detail & Related papers (2022-05-06T03:37:00Z) - Bayesian Graph Contrastive Learning [55.36652660268726]
We propose a novel perspective of graph contrastive learning methods showing random augmentations leads to encoders.
Our proposed method represents each node by a distribution in the latent space in contrast to existing techniques which embed each node to a deterministic vector.
We show a considerable improvement in performance compared to existing state-of-the-art methods on several benchmark datasets.
arXiv Detail & Related papers (2021-12-15T01:45:32Z) - Graph-Based Neural Network Models with Multiple Self-Supervised
Auxiliary Tasks [79.28094304325116]
Graph Convolutional Networks are among the most promising approaches for capturing relationships among structured data points.
We propose three novel self-supervised auxiliary tasks to train graph-based neural network models in a multi-task fashion.
arXiv Detail & Related papers (2020-11-14T11:09:51Z) - A Light Heterogeneous Graph Collaborative Filtering Model using Textual
Information [16.73333758538986]
We exploit the relevant and easily accessible textual information by advanced natural language processing (NLP) models.
We propose a light RGCN-based (RGCN, relational graph convolutional network) collaborative filtering method on heterogeneous graphs.
arXiv Detail & Related papers (2020-10-04T11:10:37Z) - Active Learning on Attributed Graphs via Graph Cognizant Logistic
Regression and Preemptive Query Generation [37.742218733235084]
We propose a novel graph-based active learning algorithm for the task of node classification in attributed graphs.
Our algorithm uses graph cognizant logistic regression, equivalent to a linearized graph convolutional neural network (GCN) for the prediction phase and maximizes the expected error reduction in the query phase.
We conduct experiments on five public benchmark datasets, demonstrating a significant improvement over state-of-the-art approaches.
arXiv Detail & Related papers (2020-07-09T18:00:53Z) - Quantifying Challenges in the Application of Graph Representation
Learning [0.0]
We provide an application oriented perspective to a set of popular embedding approaches.
We evaluate their representational power with respect to real-world graph properties.
Our results suggest that "one-to-fit-all" GRL approaches are hard to define in real-world scenarios.
arXiv Detail & Related papers (2020-06-18T03:19:43Z) - GCC: Graph Contrastive Coding for Graph Neural Network Pre-Training [62.73470368851127]
Graph representation learning has emerged as a powerful technique for addressing real-world problems.
We design Graph Contrastive Coding -- a self-supervised graph neural network pre-training framework.
We conduct experiments on three graph learning tasks and ten graph datasets.
arXiv Detail & Related papers (2020-06-17T16:18:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.