論文の概要: A Survey on Multi-Resident Activity Recognition in Smart Environments
- arxiv url: http://arxiv.org/abs/2304.12304v1
- Date: Mon, 24 Apr 2023 17:55:10 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 13:47:35.397589
- Title: A Survey on Multi-Resident Activity Recognition in Smart Environments
- Title(参考訳): スマート環境におけるマルチレジデント活動認識に関する調査
- Authors: Farhad MortezaPour Shiri, Thinagaran Perumal, Norwati Mustapha,
Raihani Mohamed, Mohd Anuaruddin Bin Ahmadon, and Shingo Yamaguchi
- Abstract要約: HAR(Human Activity Recognition)は、スマートデバイス、センサー、アルゴリズムを利用して個人の行動を自動的に分類し識別する、急速に成長する分野である。
これらのシステムには、ケアタスクの支援、セキュリティの向上、エネルギー効率の向上など、幅広い応用がある。
重要な課題の1つは、センサーの観察と関係者の身元を正確に関連付けることである。
- 参考スコア(独自算出の注目度): 1.2037683414151241
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Human activity recognition (HAR) is a rapidly growing field that utilizes
smart devices, sensors, and algorithms to automatically classify and identify
the actions of individuals within a given environment. These systems have a
wide range of applications, including assisting with caring tasks, increasing
security, and improving energy efficiency. However, there are several
challenges that must be addressed in order to effectively utilize HAR systems
in multi-resident environments. One of the key challenges is accurately
associating sensor observations with the identities of the individuals
involved, which can be particularly difficult when residents are engaging in
complex and collaborative activities. This paper provides a brief overview of
the design and implementation of HAR systems, including a summary of the
various data collection devices and approaches used for human activity
identification. It also reviews previous research on the use of these systems
in multi-resident environments and offers conclusions on the current state of
the art in the field.
- Abstract(参考訳): HAR(Human Activity Recognition)は、スマートデバイス、センサー、アルゴリズムを利用して、特定の環境内の個人の行動を自動的に分類し識別する、急速に成長する分野である。
これらのシステムには、ケアタスクの支援、セキュリティの向上、エネルギー効率の向上など、幅広い応用がある。
しかし, マルチレジデント環境において, HARシステムを効果的に活用するには, 課題がいくつかある。
重要な課題の1つは、センサーの観察と関係者のアイデンティティを正確に関連付けることであり、住民が複雑で協調的な活動に従事している場合、特に困難である。
本稿では,harシステムの設計と実装の概要について概説するとともに,様々なデータ収集装置とヒューマンアクティビティ同定のためのアプローチについて概説する。
また、マルチレジデント環境におけるこれらのシステムの利用に関する以前の研究をレビューし、この分野における技術の現状について結論を提供する。
関連論文リスト
- SPA-Bench: A Comprehensive Benchmark for SmartPhone Agent Evaluation [89.24729958546168]
We present SPA-Bench, a comprehensive SmartPhone Agent Benchmark designed to evaluate (M)LLM-based agent。
SPA-Benchは3つの重要なコントリビューションを提供している。 英語と中国語の両方で、システムとサードパーティアプリをカバーする多様なタスクセットで、日々のルーチンで一般的に使用される機能に焦点を当てている。
複数の次元にまたがってエージェントのパフォーマンスを自動的に評価する新しい評価パイプラインは、タスク完了とリソース消費に関連する7つの指標を含んでいる。
論文 参考訳(メタデータ) (2024-10-19T17:28:48Z) - Multidimensional Human Activity Recognition With Large Language Model: A Conceptual Framework [0.0]
緊急対応や高齢者ケアのような高リスク環境では、大きな言語モデル(LLM)の統合がリスクアセスメント、リソースアロケーション、緊急対応に革命をもたらします。
本稿では,HAR(Human Activity Recognition)システムにおける多次元学習を支援するために,様々なウェアラブルデバイスを1次元と見なす概念的枠組みを提案する。
論文 参考訳(メタデータ) (2024-09-16T21:36:23Z) - DISCOVERYWORLD: A Virtual Environment for Developing and Evaluating Automated Scientific Discovery Agents [49.74065769505137]
本研究では,新しい科学的発見の完全なサイクルを実行するエージェントの能力を開発し,ベンチマークする最初の仮想環境であるDiscoVERYWORLDを紹介する。
8つのトピックにまたがる120の異なる課題タスクが含まれており、3レベルの難易度といくつかのパラメトリックなバリエーションがある。
従来の環境においてよく機能する強力なベースラインエージェントが、ほとんどのdiscoVERYWORLDタスクに苦労していることがわかった。
論文 参考訳(メタデータ) (2024-06-10T20:08:44Z) - Unimodal and Multimodal Sensor Fusion for Wearable Activity Recognition [0.0]
ヒューマンアクティビティ認識(HAR)は、冗長な情報と補完的な情報を組み合わせることで恩恵を受ける。
このPh.D.の仕事は、慣性、圧力(音響と大気圧)、およびHARのための繊維の容量感覚のような感覚モーダルを取り入れている。
選択されたウェアラブルデバイスとセンシングモダリティは、機械学習ベースのアルゴリズムと完全に統合されている。
論文 参考訳(メタデータ) (2024-04-24T17:35:29Z) - A Survey on Multimodal Wearable Sensor-based Human Action Recognition [15.054052500762559]
WSHAR(Wearable Sensor-based Human Activity Recognition)は、高齢者の日常生活を支援するための有望な補助技術である。
WSHARの最近の調査は、ディープラーニングアプローチのみに焦点を絞ったものや、単一センサーのモダリティに焦点が当てられている。
本研究では,新参者や研究者を対象に,マルチモーダル学習をWSHARドメインに活用するための総合的な調査を行う。
論文 参考訳(メタデータ) (2024-04-14T18:43:16Z) - Object Detectors in the Open Environment: Challenges, Solutions, and Outlook [95.3317059617271]
オープン環境のダイナミックで複雑な性質は、オブジェクト検出器に新しくて恐ろしい挑戦をもたらす。
本稿では,オープン環境におけるオブジェクト検出器の総合的なレビューと解析を行う。
データ/ターゲットの変化の次元に基づいて、4つの四分法(ドメイン外、カテゴリ外、堅牢な学習、漸進的な学習)を含むフレームワークを提案する。
論文 参考訳(メタデータ) (2024-03-24T19:32:39Z) - Know Thy Neighbors: A Graph Based Approach for Effective Sensor-Based
Human Activity Recognition in Smart Homes [0.0]
スマートホームにおけるヒューマンアクティビティ認識(HAR)のためのグラフ誘導ニューラルネットワーク手法を提案する。
スマートホームにおけるセンサネットワークを表す,より表現力のあるグラフ構造を学習することで,これを実現する。
本手法は,アテンション機構の適用により,個別の入力センサ計測を特徴空間にマッピングする。
論文 参考訳(メタデータ) (2023-11-16T02:43:13Z) - MultiIoT: Benchmarking Machine Learning for the Internet of Things [70.74131118309967]
次世代の機械学習システムは、物理的世界に対する知覚と相互作用に長けなければならない。
運動、熱、位置情報、深度、無線信号、ビデオ、オーディオからの知覚データは、物理環境の状態をモデル化するためにますます使われています。
既存の取り組みは、しばしば単一の感覚的モダリティまたは予測タスクに特化している。
本稿は、12のモダリティと8つの現実世界タスクから115万以上のサンプルを含む、これまでで最も拡張的で統一されたIoTベンチマークであるMultiIoTを提案する。
論文 参考訳(メタデータ) (2023-11-10T18:13:08Z) - Contactless Human Activity Recognition using Deep Learning with Flexible
and Scalable Software Define Radio [1.3106429146573144]
本研究では,環境センシングの新たな手法として,Wi-Fiチャネル状態情報(CSI)の利用について検討する。
これらの方法は、プライバシーを侵害する視覚ベースのシステムに必要な追加のハードウェアを避ける。
本研究では,Wi-Fi CSIベースのHARシステムを提案する。
論文 参考訳(メタデータ) (2023-04-18T10:20:14Z) - Deep Learning for Sensor-based Human Activity Recognition: Overview,
Challenges and Opportunities [52.59080024266596]
本稿では,センサを用いた人間の活動認識のための最先端のディープラーニング手法について調査する。
まず、官能データのマルチモーダリティを導入し、公開データセットに情報を提供する。
次に、課題によって深層メソッドを構築するための新しい分類法を提案する。
論文 参考訳(メタデータ) (2020-01-21T09:55:59Z) - Deep Learning for Person Re-identification: A Survey and Outlook [233.36948173686602]
人物再識別(Re-ID)は、複数の重複しないカメラを通して興味ある人物を検索することを目的としている。
人物のRe-IDシステム開発に関わるコンポーネントを分離することにより、それをクローズドワールドとオープンワールドのセッティングに分類する。
論文 参考訳(メタデータ) (2020-01-13T12:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。