Pre-trained Embeddings for Entity Resolution: An Experimental Analysis
[Experiment, Analysis & Benchmark]
- URL: http://arxiv.org/abs/2304.12329v1
- Date: Mon, 24 Apr 2023 08:53:54 GMT
- Title: Pre-trained Embeddings for Entity Resolution: An Experimental Analysis
[Experiment, Analysis & Benchmark]
- Authors: Alexandros Zeakis, George Papadakis, Dimitrios Skoutas, Manolis
Koubarakis
- Abstract summary: We perform a thorough experimental analysis of 12 popular language models over 17 established benchmark datasets.
First, we assess their vectorization overhead for converting all input entities into dense embeddings vectors.
Second, we investigate their blocking performance, performing a detailed scalability analysis, and comparing them with the state-of-the-art deep learning-based blocking method.
Third, we conclude with their relative performance for both supervised and unsupervised matching.
- Score: 65.11858854040544
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Many recent works on Entity Resolution (ER) leverage Deep Learning techniques
involving language models to improve effectiveness. This is applied to both
main steps of ER, i.e., blocking and matching. Several pre-trained embeddings
have been tested, with the most popular ones being fastText and variants of the
BERT model. However, there is no detailed analysis of their pros and cons. To
cover this gap, we perform a thorough experimental analysis of 12 popular
language models over 17 established benchmark datasets. First, we assess their
vectorization overhead for converting all input entities into dense embeddings
vectors. Second, we investigate their blocking performance, performing a
detailed scalability analysis, and comparing them with the state-of-the-art
deep learning-based blocking method. Third, we conclude with their relative
performance for both supervised and unsupervised matching. Our experimental
results provide novel insights into the strengths and weaknesses of the main
language models, facilitating researchers and practitioners to select the most
suitable ones in practice.
Related papers
- Opening the Black Box: Analyzing Attention Weights and Hidden States in
Pre-trained Language Models for Non-language Tasks [0.8889304968879164]
We apply a pre-trained language model to constrained arithmetic problems with hierarchical structure, to analyze their attention weight scores and hidden states.
The investigation reveals promising results, with the model addressing hierarchical problems in a moderately structured manner, similar to human problem-solving strategies.
The attention analysis allows us to hypothesize that the model can generalize to longer sequences in ListOps dataset, a conclusion later confirmed through testing on sequences longer than those in the training set.
arXiv Detail & Related papers (2023-06-21T11:48:07Z) - Bag of Tricks for Effective Language Model Pretraining and Downstream
Adaptation: A Case Study on GLUE [93.98660272309974]
This report briefly describes our submission Vega v1 on the General Language Understanding Evaluation leaderboard.
GLUE is a collection of nine natural language understanding tasks, including question answering, linguistic acceptability, sentiment analysis, text similarity, paraphrase detection, and natural language inference.
With our optimized pretraining and fine-tuning strategies, our 1.3 billion model sets new state-of-the-art on 4/9 tasks, achieving the best average score of 91.3.
arXiv Detail & Related papers (2023-02-18T09:26:35Z) - Ensemble Transfer Learning for Multilingual Coreference Resolution [60.409789753164944]
A problem that frequently occurs when working with a non-English language is the scarcity of annotated training data.
We design a simple but effective ensemble-based framework that combines various transfer learning techniques.
We also propose a low-cost TL method that bootstraps coreference resolution models by utilizing Wikipedia anchor texts.
arXiv Detail & Related papers (2023-01-22T18:22:55Z) - A Simple and Strong Baseline for End-to-End Neural RST-style Discourse
Parsing [44.72809363746258]
This paper explores a strong baseline by integrating existing simple parsing strategies, top-down and bottom-up, with various transformer-based pre-trained language models.
The experimental results obtained from two benchmark datasets demonstrate that the parsing performance relies on the pretrained language models rather than the parsing strategies.
arXiv Detail & Related papers (2022-10-15T18:38:08Z) - Improving Pre-trained Language Model Fine-tuning with Noise Stability
Regularization [94.4409074435894]
We propose a novel and effective fine-tuning framework, named Layerwise Noise Stability Regularization (LNSR)
Specifically, we propose to inject the standard Gaussian noise and regularize hidden representations of the fine-tuned model.
We demonstrate the advantages of the proposed method over other state-of-the-art algorithms including L2-SP, Mixout and SMART.
arXiv Detail & Related papers (2022-06-12T04:42:49Z) - More Than Words: Towards Better Quality Interpretations of Text
Classifiers [16.66535643383862]
We show that token-based interpretability, while being a convenient first choice given the input interfaces of the ML models, is not the most effective one in all situations.
We show that higher-level feature attributions offer several advantages: 1) they are more robust as measured by the randomization tests, 2) they lead to lower variability when using approximation-based methods like SHAP, and 3) they are more intelligible to humans in situations where the linguistic coherence resides at a higher level.
arXiv Detail & Related papers (2021-12-23T10:18:50Z) - Lexicon-based Methods vs. BERT for Text Sentiment Analysis [0.15293427903448023]
SO-CAL and SentiStrength lexicon-based methods adapted for the Russian language.
RuBERT outperforms both lexicon-based methods on average, but SO-CAL surpasses RuBERT for four corpora out of 16.
arXiv Detail & Related papers (2021-11-19T08:47:32Z) - Adversarial GLUE: A Multi-Task Benchmark for Robustness Evaluation of
Language Models [86.02610674750345]
Adversarial GLUE (AdvGLUE) is a new multi-task benchmark to explore and evaluate the vulnerabilities of modern large-scale language models under various types of adversarial attacks.
We apply 14 adversarial attack methods to GLUE tasks to construct AdvGLUE, which is further validated by humans for reliable annotations.
All the language models and robust training methods we tested perform poorly on AdvGLUE, with scores lagging far behind the benign accuracy.
arXiv Detail & Related papers (2021-11-04T12:59:55Z) - Toward the Understanding of Deep Text Matching Models for Information
Retrieval [72.72380690535766]
This paper aims at testing whether existing deep text matching methods satisfy some fundamental gradients in information retrieval.
Specifically, four attributions are used in our study, i.e., term frequency constraint, term discrimination constraint, length normalization constraints, and TF-length constraint.
Experimental results on LETOR 4.0 and MS Marco show that all the investigated deep text matching methods satisfy the above constraints with high probabilities in statistics.
arXiv Detail & Related papers (2021-08-16T13:33:15Z) - Improving Authorship Verification using Linguistic Divergence [6.673132899229721]
We propose an unsupervised solution to the Authorship Verification task that utilizes pre-trained deep language models.
The proposed metric is a measure of the difference between the two authors comparing against pre-trained language models.
arXiv Detail & Related papers (2021-03-12T03:01:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.