論文の概要: Analyzing categorical time series with the R package ctsfeatures
- arxiv url: http://arxiv.org/abs/2304.12332v1
- Date: Mon, 24 Apr 2023 16:16:56 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 23:03:34.291206
- Title: Analyzing categorical time series with the R package ctsfeatures
- Title(参考訳): Rパッケージctsfeaturesを用いたカテゴリー時系列解析
- Authors: \'Angel L\'opez Oriona and Jos\'e Antonio Vilar Fern\'andez
- Abstract要約: Rパッケージctsfeaturesは、カテゴリの時系列を分析するための便利なツールセットを提供する。
いくつかの関数の出力は、クラスタリング、分類、外れ値検出など、従来の機械学習タスクの実行に使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Time series data are ubiquitous nowadays. Whereas most of the literature on
the topic deals with real-valued time series, categorical time series have
received much less attention. However, the development of data mining
techniques for this kind of data has substantially increased in recent years.
The R package ctsfeatures offers users a set of useful tools for analyzing
categorical time series. In particular, several functions allowing the
extraction of well-known statistical features and the construction of
illustrative graphs describing underlying temporal patterns are provided in the
package. The output of some functions can be employed to perform traditional
machine learning tasks including clustering, classification and outlier
detection. The package also includes two datasets of biological sequences
introduced in the literature for clustering purposes, as well as three
interesting synthetic databases. In this work, the main characteristics of the
package are described and its use is illustrated through various examples.
Practitioners from a wide variety of fields could benefit from the valuable
tools provided by ctsfeatures.
- Abstract(参考訳): 現在、時系列データはユビキタスである。
この話題に関する文献の多くは実価値のある時系列を扱うが、分類的時系列はそれほど注目されていない。
しかし,近年,このようなデータマイニング技術の発展が顕著に進んでいる。
Rパッケージctsfeaturesは、分類時系列を分析するための便利なツールセットを提供する。
特に、よく知られた統計的特徴の抽出を可能にするいくつかの関数と、そのパッケージに基礎となる時間パターンを記述する図式グラフが提供されている。
いくつかの関数の出力は、クラスタリング、分類、外れ値検出など、従来の機械学習タスクの実行に使用することができる。
このパッケージには、クラスタリングのために文献に導入された2つの生物学的配列のデータセットと、3つの興味深い合成データベースも含まれている。
本研究では,パッケージの主な特徴を述べ,その用途を様々な例を通して示す。
さまざまな分野の実践者は、ctsfeaturesが提供する貴重なツールの恩恵を受けることができる。
関連論文リスト
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Ordinal time series analysis with the R package otsfeatures [0.0]
R package otsfeatures は順序時系列を解析するための単純な関数のセットを提供しようとする。
いくつかの関数の出力は、クラスタリング、分類、または外れ値検出などの従来の機械学習タスクの実行に使用することができる。
論文 参考訳(メタデータ) (2023-04-24T16:40:27Z) - Feature-Based Time-Series Analysis in R using the theft Package [0.0]
時系列機能の集合を計算するための多くのオープンソースソフトウェアパッケージは、複数のプログラミング言語にまたがって存在している。
ここでは、これらの問題の解決策を、盗難と呼ばれるRソフトウェアパッケージに紹介する。
論文 参考訳(メタデータ) (2022-08-12T07:29:29Z) - A Review of Open Source Software Tools for Time Series Analysis [0.0]
本稿では、アーキテクチャを備えた典型的な時系列分析(TSA)フレームワークについて述べ、TSAフレームワークの主な特徴を列挙する。
本稿では,60の時系列解析ツール,32の予測モジュール,21のパッケージの異常検出について検討した。
論文 参考訳(メタデータ) (2022-03-10T07:12:20Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
本稿では,時系列をネットワークに変換する既存のマッピング手法について概観する。
我々は、主要な概念的アプローチを説明し、権威的な参照を提供し、統一された表記法と言語におけるそれらの利点と限界について洞察を与える。
ごく最近の研究だが、この研究領域には大きな可能性を秘めており、今後の研究の道を開くことを目的としている。
論文 参考訳(メタデータ) (2021-10-11T13:33:18Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
論文 参考訳(メタデータ) (2021-03-15T08:12:19Z) - Connecting the Dots: Multivariate Time Series Forecasting with Graph
Neural Networks [91.65637773358347]
多変量時系列データに特化して設計された汎用グラフニューラルネットワークフレームワークを提案する。
グラフ学習モジュールを用いて,変数間の一方向関係を自動的に抽出する。
提案手法は,4つのベンチマークデータセットのうち3つにおいて,最先端のベースライン手法よりも優れている。
論文 参考訳(メタデータ) (2020-05-24T04:02:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。