論文の概要: Ordinal time series analysis with the R package otsfeatures
- arxiv url: http://arxiv.org/abs/2304.12251v1
- Date: Mon, 24 Apr 2023 16:40:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-25 14:07:21.992433
- Title: Ordinal time series analysis with the R package otsfeatures
- Title(参考訳): Rパッケージotsfeaturesを用いた標準時系列解析
- Authors: \'Angel L\'opez Oriona and Jos\'e Antonio Vilar Fern\'andez
- Abstract要約: R package otsfeatures は順序時系列を解析するための単純な関数のセットを提供しようとする。
いくつかの関数の出力は、クラスタリング、分類、または外れ値検出などの従来の機械学習タスクの実行に使用することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The 21st century has witnessed a growing interest in the analysis of time
series data. Whereas most of the literature on the topic deals with real-valued
time series, ordinal time series have typically received much less attention.
However, the development of specific analytical tools for the latter objects
has substantially increased in recent years. The R package otsfeatures attempts
to provide a set of simple functions for analyzing ordinal time series. In
particular, several commands allowing the extraction of well-known statistical
features and the execution of inferential tasks are available for the user. The
output of several functions can be employed to perform traditional machine
learning tasks including clustering, classification or outlier detection.
otsfeatures also incorporates two datasets of financial time series which were
used in the literature for clustering purposes, as well as three interesting
synthetic databases. The main properties of the package are described and its
use is illustrated through several examples. Researchers from a broad variety
of disciplines could benefit from the powerful tools provided by otsfeatures.
- Abstract(参考訳): 21世紀は時系列データ分析への関心が高まっている。
この話題に関する文献のほとんどは実価値のある時系列を扱うが、通常、通常の時系列はより少ない注意を払っている。
しかし,近年,後者の分析ツールの開発が著しく進んでいる。
Rパッケージotsfeaturesは順序時系列を解析するための単純な関数セットを提供しようとする。
特に、よく知られた統計特徴の抽出と推論タスクの実行を可能にするコマンドがユーザによって提供されている。
いくつかの関数の出力は、クラスタリング、分類、または外れ値検出などの従来の機械学習タスクの実行に使用することができる。
otsfeaturesはまた、クラスタリングのために文献で使用された2つの金融時系列データセットと、3つの興味深い合成データベースも組み込んでいる。
パッケージの主な特性を説明し、いくつかの例を通してその使用例を示す。
様々な分野の研究者は、otsfeaturesが提供する強力なツールの恩恵を受けることができる。
関連論文リスト
- Deep Time Series Models: A Comprehensive Survey and Benchmark [74.28364194333447]
時系列データは、現実世界のシナリオにおいて非常に重要である。
近年、時系列コミュニティで顕著なブレークスルーが見られた。
多様な分析タスクのためのディープ時系列モデルの公正なベンチマークとして、時系列ライブラリ(TSLib)をリリースします。
論文 参考訳(メタデータ) (2024-07-18T08:31:55Z) - Temporal Treasure Hunt: Content-based Time Series Retrieval System for
Discovering Insights [34.1973242428317]
時系列データは、金融、医療、製造業など、さまざまな分野にまたがっている。
Content-based Time Series Retrieval(CTSR)を実行する能力は、未知の時系列例を特定する上で重要である。
我々は,様々な領域の時系列データを含むCTSRベンチマークデータセットを提案する。
論文 参考訳(メタデータ) (2023-11-05T04:12:13Z) - Analyzing categorical time series with the R package ctsfeatures [0.0]
Rパッケージctsfeaturesは、カテゴリの時系列を分析するための便利なツールセットを提供する。
いくつかの関数の出力は、クラスタリング、分類、外れ値検出など、従来の機械学習タスクの実行に使用することができる。
論文 参考訳(メタデータ) (2023-04-24T16:16:56Z) - Feature-Based Time-Series Analysis in R using the theft Package [0.0]
時系列機能の集合を計算するための多くのオープンソースソフトウェアパッケージは、複数のプログラミング言語にまたがって存在している。
ここでは、これらの問題の解決策を、盗難と呼ばれるRソフトウェアパッケージに紹介する。
論文 参考訳(メタデータ) (2022-08-12T07:29:29Z) - A Review of Open Source Software Tools for Time Series Analysis [0.0]
本稿では、アーキテクチャを備えた典型的な時系列分析(TSA)フレームワークについて述べ、TSAフレームワークの主な特徴を列挙する。
本稿では,60の時系列解析ツール,32の予測モジュール,21のパッケージの異常検出について検討した。
論文 参考訳(メタデータ) (2022-03-10T07:12:20Z) - Self-Attention Neural Bag-of-Features [103.70855797025689]
我々は最近導入された2D-Attentionの上に構築し、注意学習方法論を再構築する。
本稿では,関連情報を強調した2次元目視マスクを学習する機能・時間的アテンション機構を提案する。
論文 参考訳(メタデータ) (2022-01-26T17:54:14Z) - Novel Features for Time Series Analysis: A Complex Networks Approach [62.997667081978825]
時系列データは、気候、経済、医療などいくつかの領域で広く使われている。
最近の概念的アプローチは、複雑なネットワークへの時系列マッピングに依存している。
ネットワーク分析は、異なるタイプの時系列を特徴付けるのに使うことができる。
論文 参考訳(メタデータ) (2021-10-11T13:46:28Z) - Time Series Analysis via Network Science: Concepts and Algorithms [62.997667081978825]
本稿では,時系列をネットワークに変換する既存のマッピング手法について概観する。
我々は、主要な概念的アプローチを説明し、権威的な参照を提供し、統一された表記法と言語におけるそれらの利点と限界について洞察を与える。
ごく最近の研究だが、この研究領域には大きな可能性を秘めており、今後の研究の道を開くことを目的としている。
論文 参考訳(メタデータ) (2021-10-11T13:33:18Z) - Instance-wise Graph-based Framework for Multivariate Time Series
Forecasting [69.38716332931986]
我々は,異なる時刻スタンプにおける変数の相互依存性を利用するための,シンプルで効率的なインスタンス単位のグラフベースのフレームワークを提案する。
私たちのフレームワークのキーとなる考え方は、異なる変数の履歴時系列から予測すべき現在の時系列に情報を集約することです。
論文 参考訳(メタデータ) (2021-09-14T07:38:35Z) - Interpretable Feature Construction for Time Series Extrinsic Regression [0.028675177318965035]
一部のアプリケーション領域では、対象変数が数値であり、その問題は時系列外部回帰(TSER)として知られている。
TSERの文脈における頑健で解釈可能な特徴構築と選択のためのベイズ法の拡張を提案する。
私たちのアプローチは、TSERに取り組むためのリレーショナルな方法を利用します:(i)、リレーショナルデータスキームに格納されている時系列の多様で単純な表現を構築し、(ii)二次テーブルからデータを「フラット化」するために解釈可能な機能を構築するためにプロポジション化技術を適用します。
論文 参考訳(メタデータ) (2021-03-15T08:12:19Z) - Learning summary features of time series for likelihood free inference [93.08098361687722]
時系列データから要約機能を自動的に学習するためのデータ駆動型戦略を提案する。
以上の結果から,データから要約的特徴を学習することで,手作りの値に基づいてLFI手法よりも優れる可能性が示唆された。
論文 参考訳(メタデータ) (2020-12-04T19:21:37Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。