論文の概要: Stochastic MPC for energy hubs using data driven demand forecasting
- arxiv url: http://arxiv.org/abs/2304.12438v1
- Date: Mon, 24 Apr 2023 20:24:07 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 22:46:53.502107
- Title: Stochastic MPC for energy hubs using data driven demand forecasting
- Title(参考訳): データ駆動需要予測を用いたエネルギーハブの確率的mpc
- Authors: Francesco Micheli, Varsha Behrunani, Jonas Mehr, Philipp Heer, John
Lygeros
- Abstract要約: エネルギーハブは、複数の変換および記憶部品を介して異なるエネルギー入力を組み合わせることでエネルギー資源を変換し、分配する。
エネルギーハブの最適操作は、その柔軟性を利用してエネルギー効率を高め、運用コストを削減する。
本稿では,不確実な電力需要と熱需要に対するリスク制約を用いて,エネルギーコストを最小化するMPCコントローラを提案する。
- 参考スコア(独自算出の注目度): 4.033600628443366
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Energy hubs convert and distribute energy resources by combining different
energy inputs through multiple conversion and storage components. The optimal
operation of the energy hub exploits its flexibility to increase the energy
efficiency and reduce the operational costs. However, uncertainties in the
demand present challenges to energy hub optimization. In this paper, we propose
a stochastic MPC controller to minimize energy costs using chance constraints
for the uncertain electricity and thermal demands. Historical data is used to
build a demand prediction model based on Gaussian processes to generate a
forecast of the future electricity and heat demands. The stochastic
optimization problem is solved via the Scenario Approach by sampling multi-step
demand trajectories from the derived prediction model. The performance of the
proposed predictor and of the stochastic controller is verified on a simulated
energy hub model and demand data from a real building.
- Abstract(参考訳): エネルギーハブは、様々なエネルギー入力を複数の変換および貯蔵コンポーネントを通して組み合わせてエネルギー資源を変換および分配する。
エネルギーハブの最適操作は、その柔軟性を利用してエネルギー効率を高め、運用コストを削減する。
しかし、需要の不確実性はエネルギーハブ最適化の課題をもたらす。
本稿では,不確実な電力需要と熱需要に対するリスク制約を用いて,エネルギーコストを最小化する確率的MPCコントローラを提案する。
歴史的データはガウス過程に基づく需要予測モデルを構築し、将来の電力需要と熱需要の予測を生成するために使用される。
導出予測モデルから多段階要求軌跡をサンプリングすることにより、確率最適化問題をシナリオアプローチで解く。
提案する予測器と確率制御器の性能を実建物からの需要データとシミュレーションしたエネルギーハブモデルで検証する。
関連論文リスト
- Efficient Data-Driven MPC for Demand Response of Commercial Buildings [0.0]
小型商業ビルにおけるエネルギー管理のためのデータ駆動型・混合整数入札戦略を提案する。
屋上ユニットの暖房, 個別制御による空調システムについて検討し, 商業ビルの運転を正確にモデル化する。
当社のアプローチをいくつかの需要応答(DR)設定に適用する。
論文 参考訳(メタデータ) (2024-01-28T20:01:44Z) - FedWOA: A Federated Learning Model that uses the Whale Optimization
Algorithm for Renewable Energy Prediction [0.0]
本稿では,フェデレート学習モデルについて紹介する。フェデレーション学習モデルは,プロシューマーエネルギーデータに基づいて訓練された局所ニューラルネットワークモデルの重みから,グローバル予測モデルを集約する。
その結果,FedAVGと比較して,MSEでは25%,MAEでは16%の精度でエネルギー予測モデルの精度を効果的に向上できることがわかった。
論文 参考訳(メタデータ) (2023-09-19T05:44:18Z) - Benchmarks and Custom Package for Energy Forecasting [55.460452605056894]
エネルギー予測は、電力グリッドディスパッチのようなその後のタスクのコストを最小化することを目的としている。
本稿では,大規模負荷データセットを収集し,再生可能エネルギーデータセットを新たにリリースした。
評価指標の異なるレベルにおいて,21種類の予測手法を用いた広範囲な実験を行った。
論文 参考訳(メタデータ) (2023-07-14T06:50:02Z) - Data-Driven Stochastic AC-OPF using Gaussian Processes [54.94701604030199]
大量の再生可能エネルギーを電力網に統合することは、おそらく気候変動を遅らせる電力網からの二酸化炭素排出量を減らす最も有効な方法だろう。
本稿では、不確実な入力を組み込むことのできる交流電力流方程式に基づく代替データ駆動方式を提案する。
GPアプローチは、このギャップを交流電力流方程式に閉じるために、単純だが制約のないデータ駆動アプローチを学ぶ。
論文 参考訳(メタデータ) (2022-07-21T23:02:35Z) - Cascaded Deep Hybrid Models for Multistep Household Energy Consumption
Forecasting [5.478764356647437]
本研究は,多段階家庭電力消費予測のための2つのハイブリッドキャスケードモデルを提案する。
提案したハイブリッドモデルでは,既存のマルチステップ電力消費予測手法よりも優れた予測性能が得られる。
論文 参考訳(メタデータ) (2022-07-06T11:02:23Z) - Learning Implicit Priors for Motion Optimization [105.11889448885226]
エネルギーベースモデル(EBM)は、表現力のある確率密度分布を表す。
本稿では,EMMを動作最適化に適用するために必要となるモデリングとアルゴリズムの選択について述べる。
論文 参考訳(メタデータ) (2022-04-11T19:14:54Z) - Risk-Aware Energy Scheduling for Edge Computing with Microgrid: A
Multi-Agent Deep Reinforcement Learning Approach [82.6692222294594]
マイクログリッドを用いたMECネットワークにおけるリスク対応エネルギースケジューリング問題について検討する。
ニューラルネットワークを用いたマルチエージェントディープ強化学習(MADRL)に基づくアドバンテージアクター・クリティック(A3C)アルゴリズムを適用し,その解を導出する。
論文 参考訳(メタデータ) (2020-02-21T02:14:38Z) - Multi-Agent Meta-Reinforcement Learning for Self-Powered and Sustainable
Edge Computing Systems [87.4519172058185]
エッジコンピューティング機能を有するセルフパワー無線ネットワークの効率的なエネルギー分配機構について検討した。
定式化問題を解くために,新しいマルチエージェントメタ強化学習(MAMRL)フレームワークを提案する。
実験の結果、提案されたMAMRLモデルは、再生不可能なエネルギー使用量を最大11%削減し、エネルギーコストを22.4%削減できることが示された。
論文 参考訳(メタデータ) (2020-02-20T04:58:07Z) - NeurOpt: Neural network based optimization for building energy
management and climate control [58.06411999767069]
モデル同定のコストを削減するために,ニューラルネットワークに基づくデータ駆動制御アルゴリズムを提案する。
イタリアにある10の独立したゾーンを持つ2階建ての建物で、学習と制御のアルゴリズムを検証する。
論文 参考訳(メタデータ) (2020-01-22T00:51:03Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。