論文の概要: SEA: A Spatially Explicit Architecture for Multi-Agent Reinforcement
Learning
- arxiv url: http://arxiv.org/abs/2304.12532v1
- Date: Tue, 25 Apr 2023 03:00:09 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 22:07:33.864629
- Title: SEA: A Spatially Explicit Architecture for Multi-Agent Reinforcement
Learning
- Title(参考訳): SEA:マルチエージェント強化学習のための空間的拡張アーキテクチャ
- Authors: Dapeng Li, Zhiwei Xu, Bin Zhang, Guoliang Fan
- Abstract要約: マルチエージェント強化学習のための空間情報抽出構造を提案する。
エージェントは、空間エンコーダデコーダ構造を通して、近隣とグローバル情報を効果的に共有することができる。
- 参考スコア(独自算出の注目度): 14.935456456463731
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Spatial information is essential in various fields. How to explicitly model
according to the spatial location of agents is also very important for the
multi-agent problem, especially when the number of agents is changing and the
scale is enormous. Inspired by the point cloud task in computer vision, we
propose a spatial information extraction structure for multi-agent
reinforcement learning in this paper. Agents can effectively share the
neighborhood and global information through a spatially encoder-decoder
structure. Our method follows the centralized training with decentralized
execution (CTDE) paradigm. In addition, our structure can be applied to various
existing mainstream reinforcement learning algorithms with minor modifications
and can deal with the problem with a variable number of agents. The experiments
in several multi-agent scenarios show that the existing methods can get
convincing results by adding our spatially explicit architecture.
- Abstract(参考訳): 空間情報は様々な分野において不可欠である。
エージェントの空間的位置に応じて明確にモデル化する方法は、特にエージェントの数が変化し、スケールが巨大である場合に、マルチエージェント問題にとって非常に重要である。
本稿では,コンピュータビジョンにおけるポイントクラウドタスクに着想を得て,マルチエージェント強化学習のための空間情報抽出構造を提案する。
エージェントは、空間エンコーダデコーダ構造を通じて、近隣とグローバル情報を効果的に共有することができる。
本手法は,分散実行(CTDE)パラダイムを用いた集中型学習に準じる。
さらに,本手法は,既存の多種多様な強化学習アルゴリズムに対して,小さな修正を加えることで適用可能であり,様々なエージェントで問題に対処することができる。
複数のマルチエージェントシナリオにおける実験は、既存の手法が空間的に明示的なアーキテクチャを追加することで説得力のある結果が得られることを示している。
関連論文リスト
- Very Large-Scale Multi-Agent Simulation in AgentScope [112.98986800070581]
我々は,ユーザフレンドリーなマルチエージェントプラットフォームであるAgentScopeの新機能とコンポーネントを開発した。
高いスケーラビリティと高効率を実現するために,アクタをベースとした分散機構を提案する。
また、多数のエージェントを便利に監視し、管理するためのWebベースのインターフェースも提供します。
論文 参考訳(メタデータ) (2024-07-25T05:50:46Z) - Decentralized Transformers with Centralized Aggregation are Sample-Efficient Multi-Agent World Models [106.94827590977337]
本稿では,分散化された局所力学を拡張性のために学習するマルチエージェントRL(MARL)の新たな世界モデルを提案する。
また、集中表現アグリゲーションを可能にする効果的なソリューションとしてPerceiver Transformerを導入する。
Starcraft Multi-Agent Challenge (SMAC) の結果は、サンプル効率と全体的な性能の両方において、強力なモデルフリーアプローチと既存のモデルベース手法よりも優れていることを示している。
論文 参考訳(メタデータ) (2024-06-22T12:40:03Z) - AgentScope: A Flexible yet Robust Multi-Agent Platform [66.64116117163755]
AgentScopeは、メッセージ交換をコアコミュニケーションメカニズムとする、開発者中心のマルチエージェントプラットフォームである。
豊富な構文ツール、組み込みエージェントとサービス機能、アプリケーションのデモとユーティリティモニタのためのユーザフレンドリなインターフェース、ゼロコードプログラミングワークステーション、自動プロンプトチューニング機構により、開発とデプロイメントの両方の障壁は大幅に低下した。
論文 参考訳(メタデータ) (2024-02-21T04:11:28Z) - An Interactive Agent Foundation Model [49.77861810045509]
本稿では,AIエージェントを訓練するための新しいマルチタスクエージェントトレーニングパラダイムを用いた対話型エージェント基礎モデルを提案する。
トレーニングパラダイムは、視覚マスク付きオートエンコーダ、言語モデリング、次世代の予測など、多様な事前学習戦略を統一する。
私たちは、ロボティクス、ゲームAI、ヘルスケアという3つの異なる領域でフレームワークのパフォーマンスを実演します。
論文 参考訳(メタデータ) (2024-02-08T18:58:02Z) - MASP: Scalable GNN-based Planning for Multi-Agent Navigation [17.788592987873905]
エージェント数の多いナビゲーションタスクのための目標条件付き階層型プランナを提案する。
また、グラフニューラルネットワーク(GNN)を活用し、エージェントと目標間の相互作用をモデル化し、目標達成を改善する。
その結果、MASPは古典的な計画ベースの競合やRLベースラインよりも優れていた。
論文 参考訳(メタデータ) (2023-12-05T06:05:04Z) - Scalable Multi-agent Covering Option Discovery based on Kronecker Graphs [49.71319907864573]
本稿では,分解が容易なマルチエージェントスキル発見法を提案する。
我々のキーとなる考え方は、合同状態空間をクロネッカーグラフとして近似することであり、そのフィドラーベクトルを直接見積もることができる。
ラプラシアンスペクトルを直接計算することは、無限大の状態空間を持つタスクには難易度が高いことを考慮し、さらに本手法の深層学習拡張を提案する。
論文 参考訳(メタデータ) (2023-07-21T14:53:12Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
拡散モデル(DM)は、最近オフライン強化学習を含む様々なシナリオで大きな成功を収めた。
この問題に対処する新しい生成型マルチエージェント学習フレームワークであるMADiffを提案する。
本実験は,マルチエージェント学習タスクにおけるベースラインアルゴリズムと比較して,MADiffの優れた性能を示す。
論文 参考訳(メタデータ) (2023-05-27T02:14:09Z) - K-nearest Multi-agent Deep Reinforcement Learning for Collaborative
Tasks with a Variable Number of Agents [13.110291070230815]
エージェント数の変化を考慮した多エージェント協調作業のための深層強化学習アルゴリズムを提案する。
実運用現場で現実的なシナリオを生成するために日立が開発した艦隊管理シミュレータを用いて,本アルゴリズムの適用例を示した。
論文 参考訳(メタデータ) (2022-01-18T16:14:24Z) - Meta-CPR: Generalize to Unseen Large Number of Agents with Communication
Pattern Recognition Module [29.75594940509839]
エージェント数が異なるマルチエージェント環境をマルチタスク問題として定式化する。
本稿では,メタ強化学習(meta-RL)フレームワークを提案する。
提案フレームワークはメタ学習型通信パターン認識(CPR)モジュールを用いて通信の振る舞いを識別する。
論文 参考訳(メタデータ) (2021-12-14T08:23:04Z) - Learning Efficient Multi-Agent Cooperative Visual Exploration [18.42493808094464]
複数のエージェントによる視覚的屋内探索の課題を考察し、エージェントはできるだけ少ないステップで屋内全領域を探索する必要がある。
我々は、最先端の単一エージェントRLソリューションであるActive Neural SLAM(ANS)を、新しいRLベースのグローバルゴールプランナーであるSpatial Coordination Planner(SCP)を導入してマルチエージェント設定に拡張する。
SCPは、各エージェントの空間情報をエンドツーエンドに活用し、探索効率の高い異なる空間目標に向けて効果的にエージェントを誘導する。
論文 参考訳(メタデータ) (2021-10-12T04:48:10Z) - Scalable Multi-Agent Reinforcement Learning for Networked Systems with
Average Reward [17.925681736096482]
マルチエージェント強化学習(MARL)が大きなスケーラビリティの問題に直面していることは長年認識されてきた。
本稿では、モデルが局所的な依存構造を示し、スケーラブルな方法で解けるような、ネットワーク化されたMARL問題のリッチなクラスを同定する。
論文 参考訳(メタデータ) (2020-06-11T17:23:17Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。