Combining Adversaries with Anti-adversaries in Training
- URL: http://arxiv.org/abs/2304.12550v2
- Date: Thu, 18 May 2023 04:39:45 GMT
- Title: Combining Adversaries with Anti-adversaries in Training
- Authors: Xiaoling Zhou, Nan Yang, Ou Wu
- Abstract summary: Adversarial training is an effective technique to improve the robustness of deep neural networks.
We study the influence of adversarial training on deep learning models in terms of fairness, robustness, and generalization.
- Score: 9.43429549718968
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial training is an effective learning technique to improve the
robustness of deep neural networks. In this study, the influence of adversarial
training on deep learning models in terms of fairness, robustness, and
generalization is theoretically investigated under more general perturbation
scope that different samples can have different perturbation directions (the
adversarial and anti-adversarial directions) and varied perturbation bounds.
Our theoretical explorations suggest that the combination of adversaries and
anti-adversaries (samples with anti-adversarial perturbations) in training can
be more effective in achieving better fairness between classes and a better
tradeoff between robustness and generalization in some typical learning
scenarios (e.g., noisy label learning and imbalance learning) compared with
standard adversarial training. On the basis of our theoretical findings, a more
general learning objective that combines adversaries and anti-adversaries with
varied bounds on each training sample is presented. Meta learning is utilized
to optimize the combination weights. Experiments on benchmark datasets under
different learning scenarios verify our theoretical findings and the
effectiveness of the proposed methodology.
Related papers
- On the Comparison between Multi-modal and Single-modal Contrastive Learning [50.74988548106031]
We introduce a theoretical foundation for understanding the differences between multi-modal and single-modal contrastive learning.
We identify the critical factor, which is the signal-to-noise ratio (SNR), that impacts the generalizability in downstream tasks of both multi-modal and single-modal contrastive learning.
Our analysis provides a unified framework that can characterize the optimization and generalization of both single-modal and multi-modal contrastive learning.
arXiv Detail & Related papers (2024-11-05T06:21:17Z) - Adversarial Training Can Provably Improve Robustness: Theoretical Analysis of Feature Learning Process Under Structured Data [38.44734564565478]
We provide a theoretical understanding of adversarial examples and adversarial training algorithms from the perspective of feature learning theory.
We show that the adversarial training method can provably strengthen the robust feature learning and suppress the non-robust feature learning.
arXiv Detail & Related papers (2024-10-11T03:59:49Z) - Enhancing Adversarial Training with Feature Separability [52.39305978984573]
We introduce a new concept of adversarial training graph (ATG) with which the proposed adversarial training with feature separability (ATFS) enables to boost the intra-class feature similarity and increase inter-class feature variance.
Through comprehensive experiments, we demonstrate that the proposed ATFS framework significantly improves both clean and robust performance.
arXiv Detail & Related papers (2022-05-02T04:04:23Z) - Self-Ensemble Adversarial Training for Improved Robustness [14.244311026737666]
Adversarial training is the strongest strategy against various adversarial attacks among all sorts of defense methods.
Recent works mainly focus on developing new loss functions or regularizers, attempting to find the unique optimal point in the weight space.
We devise a simple but powerful emphSelf-Ensemble Adversarial Training (SEAT) method for yielding a robust classifier by averaging weights of history models.
arXiv Detail & Related papers (2022-03-18T01:12:18Z) - Adversarial Robustness of Deep Reinforcement Learning based Dynamic
Recommender Systems [50.758281304737444]
We propose to explore adversarial examples and attack detection on reinforcement learning-based interactive recommendation systems.
We first craft different types of adversarial examples by adding perturbations to the input and intervening on the casual factors.
Then, we augment recommendation systems by detecting potential attacks with a deep learning-based classifier based on the crafted data.
arXiv Detail & Related papers (2021-12-02T04:12:24Z) - Deep Active Learning by Leveraging Training Dynamics [57.95155565319465]
We propose a theory-driven deep active learning method (dynamicAL) which selects samples to maximize training dynamics.
We show that dynamicAL not only outperforms other baselines consistently but also scales well on large deep learning models.
arXiv Detail & Related papers (2021-10-16T16:51:05Z) - Exploring Adversarial Examples for Efficient Active Learning in Machine
Learning Classifiers [17.90617023533039]
We first add particular perturbation to original training examples using adversarial attack methods.
We then investigate the connections between active learning and these particular training examples.
Results show that the established theoretical foundation will guide better active learning strategies based on adversarial examples.
arXiv Detail & Related papers (2021-09-22T14:51:26Z) - Imbalanced Adversarial Training with Reweighting [33.51820466479575]
We show that adversarially trained models can suffer much worse performance on under-represented classes, when the training dataset is imbalanced.
Traditional reweighting strategies may lose efficacy to deal with the imbalance issue for adversarial training.
We propose Separable Reweighted Adversarial Training (SRAT) to facilitate adversarial training under imbalanced scenarios.
arXiv Detail & Related papers (2021-07-28T20:51:36Z) - Nonparametric Estimation of Heterogeneous Treatment Effects: From Theory
to Learning Algorithms [91.3755431537592]
We analyze four broad meta-learning strategies which rely on plug-in estimation and pseudo-outcome regression.
We highlight how this theoretical reasoning can be used to guide principled algorithm design and translate our analyses into practice.
arXiv Detail & Related papers (2021-01-26T17:11:40Z) - Improving Adversarial Robustness by Enforcing Local and Global
Compactness [19.8818435601131]
Adversary training is the most successful method that consistently resists a wide range of attacks.
We propose the Adversary Divergence Reduction Network which enforces local/global compactness and the clustering assumption.
The experimental results demonstrate that augmenting adversarial training with our proposed components can further improve the robustness of the network.
arXiv Detail & Related papers (2020-07-10T00:43:06Z) - Adversarial Self-Supervised Contrastive Learning [62.17538130778111]
Existing adversarial learning approaches mostly use class labels to generate adversarial samples that lead to incorrect predictions.
We propose a novel adversarial attack for unlabeled data, which makes the model confuse the instance-level identities of the perturbed data samples.
We present a self-supervised contrastive learning framework to adversarially train a robust neural network without labeled data.
arXiv Detail & Related papers (2020-06-13T08:24:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.