論文の概要: Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation
- arxiv url: http://arxiv.org/abs/2304.12620v2
- Date: Wed, 26 Apr 2023 13:20:17 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 10:43:33.204722
- Title: Medical SAM Adapter: Adapting Segment Anything Model for Medical Image
Segmentation
- Title(参考訳): 医用samアダプタ : 医用画像分割のためのsegment anythingモデルの適用
- Authors: Junde Wu and Rao Fu and Huihui Fang and Yuanpei Liu and Zhaowei Wang
and Yanwu Xu and Yueming Jin and Tal Arbel
- Abstract要約: そこで本研究では,医療分野の知識をセグメンテーションモデルに統合するMed SAM Adapterを提案する。
医療用SAMアダプタ(MSA)を応用した医療用SAMは,19の医療用SAMセグメンテーションタスクにおいて優れた性能を示した。
- 参考スコア(独自算出の注目度): 9.759201665778933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The Segment Anything Model (SAM) has recently gained popularity in the field
of image segmentation. Thanks to its impressive capabilities in all-round
segmentation tasks and its prompt-based interface, SAM has sparked intensive
discussion within the community. It is even said by many prestigious experts
that image segmentation task has been "finished" by SAM. However, medical image
segmentation, although an important branch of the image segmentation family,
seems not to be included in the scope of Segmenting "Anything". Many individual
experiments and recent studies have shown that SAM performs subpar in medical
image segmentation. A natural question is how to find the missing piece of the
puzzle to extend the strong segmentation capability of SAM to medical image
segmentation. In this paper, instead of fine-tuning the SAM model, we propose
Med SAM Adapter, which integrates the medical specific domain knowledge to the
segmentation model, by a simple yet effective adaptation technique. Although
this work is still one of a few to transfer the popular NLP technique Adapter
to computer vision cases, this simple implementation shows surprisingly good
performance on medical image segmentation. A medical image adapted SAM, which
we have dubbed Medical SAM Adapter (MSA), shows superior performance on 19
medical image segmentation tasks with various image modalities including CT,
MRI, ultrasound image, fundus image, and dermoscopic images. MSA outperforms a
wide range of state-of-the-art (SOTA) medical image segmentation methods, such
as nnUNet, TransUNet, UNetr, MedSegDiff, and also outperforms the fully
fine-turned MedSAM with a considerable performance gap. Code will be released
at: https://github.com/WuJunde/Medical-SAM-Adapter.
- Abstract(参考訳): Segment Anything Model (SAM)は画像セグメンテーションの分野で最近人気を集めている。
全面的なセグメンテーションタスクとプロンプトベースのインターフェースの素晴らしい機能のおかげで、SAMはコミュニティ内で激しい議論を巻き起こした。
イメージセグメンテーションのタスクはSAMによって「完了」されたと多くの名高い専門家から言われている。
しかし, イメージセグメンテーションは, イメージセグメンテーションファミリーの重要な分枝であるが, セグメンテーション"Anything"の範囲には含まれていないようである。
多くの個人実験や最近の研究では、SAMは医療画像のセグメンテーションのサブパールを担っていることが示されている。
自然な疑問は、SAMの強力なセグメンテーション能力を医療画像セグメンテーションに拡張するために、パズルの欠片を見つける方法である。
本稿では,SAMモデルを微調整する代わりに,医療特化領域の知識をセグメンテーションモデルに統合するMed SAM Adapterを提案する。
この単純な実装は、医療画像のセグメンテーションにおいて驚くほど優れた性能を示しており、一般的なNLP技術であるAdapterをコンピュータビジョンのケースに転送する試みの1つだ。
医用SAMアダプタ (MSA) は, CT, MRI, 超音波画像, 眼底画像, 皮膚内視鏡画像など, 様々な画像モダリティを有する19の医用画像セグメンテーションタスクにおいて, 優れた性能を示した。
MSAは、nnUNet、TransUNet、UNetr、MedSegDiffのような幅広い最先端(SOTA)の医療画像セグメンテーション手法より優れており、また、完全に細返されたMedSAMよりもかなりパフォーマンスの差がある。
コードは、https://github.com/WuJunde/Medical-SAM-Adapter.comでリリースされる。
関連論文リスト
- Few-Shot Adaptation of Training-Free Foundation Model for 3D Medical Image Segmentation [8.78725593323412]
FATE-SAM (Few-shot Adaptation of Training-frEe SAM) は、3次元医用画像セグメンテーションに高度なセグメンテーションモデル2 (SAM2) を適用するために設計された新しい手法である。
FATE-SAMはSAM2の事前訓練されたモジュールを再組み立てし、少数のサポート例を活用する。
複数の医用画像データセット上でFATE-SAMを評価し、教師付き学習方法、ゼロショットSAMアプローチ、微調整医療SAM手法と比較した。
論文 参考訳(メタデータ) (2025-01-15T20:44:21Z) - Learnable Prompting SAM-induced Knowledge Distillation for Semi-supervised Medical Image Segmentation [47.789013598970925]
半教師型医用画像分割のための知識蒸留フレームワークKnowSAMを提案する。
我々のモデルは最先端の半教師付きセグメンテーションアプローチより優れている。
論文 参考訳(メタデータ) (2024-12-18T11:19:23Z) - DB-SAM: Delving into High Quality Universal Medical Image Segmentation [100.63434169944853]
本稿では,2次元医療データと2次元医療データとのギャップを埋めるために,DB-SAMという二分岐型SAMフレームワークを提案する。
文献における最近の医療用SAMアダプタと比較して,DB-SAMは8.8%向上した。
論文 参考訳(メタデータ) (2024-10-05T14:36:43Z) - Improving Segment Anything on the Fly: Auxiliary Online Learning and Adaptive Fusion for Medical Image Segmentation [52.172885882728174]
医療画像の文脈では、SAMがそのセグメンテーション予測を生成した後、人間の専門家が特定のテストサンプルのセグメンテーションを修正することは珍しくない。
我々は、オンライン機械学習の利点を活用して、テスト期間中にSegment Anything(SA)を強化する新しいアプローチを導入する。
医用画像におけるSAのセグメンテーション品質を改善することを目的として,オンライン学習のための修正アノテーションを用いた。
論文 参考訳(メタデータ) (2024-06-03T03:16:25Z) - MA-SAM: Modality-agnostic SAM Adaptation for 3D Medical Image
Segmentation [58.53672866662472]
我々はMA-SAMと命名されたモダリティに依存しないSAM適応フレームワークを提案する。
本手法は,重量増加のごく一部だけを更新するためのパラメータ効率の高い微調整戦略に根ざしている。
画像エンコーダのトランスバータブロックに一連の3Dアダプタを注入することにより,事前学習した2Dバックボーンが入力データから3次元情報を抽出することができる。
論文 参考訳(メタデータ) (2023-09-16T02:41:53Z) - SAM-Med2D [34.82072231983896]
我々はSAM-Med2Dを医療用2次元画像に適用する最も包括的な研究である。
まず、公開およびプライベートデータセットから約4.6Mの画像と19.7Mマスクを収集し、キュレートします。
元のSAMのエンコーダとデコーダを微調整して、良好な性能のSAM-Med2Dを得る。
論文 参考訳(メタデータ) (2023-08-30T17:59:02Z) - AutoSAM: Adapting SAM to Medical Images by Overloading the Prompt
Encoder [101.28268762305916]
この作業では、Segment Anything Modelを同じ入力イメージで動作するエンコーダに置き換える。
複数の医用画像とビデオのベンチマークで最先端の結果を得る。
内部の知識を検査し、軽量なセグメンテーションソリューションを提供するために、浅いデコンボリューションネットワークによってマスクに復号化することを学ぶ。
論文 参考訳(メタデータ) (2023-06-10T07:27:00Z) - Customized Segment Anything Model for Medical Image Segmentation [10.933449793055313]
我々は,大規模画像分割モデルであるSAM(Segment Anything Model)に基づいて,医用画像分割のための大規模モデルをカスタマイズする新たな研究パラダイムを探求する。
SAMedは、SAMイメージエンコーダにローランクベース(LoRA)ファインタニング戦略を適用し、ラベル付き医用画像セグメンテーションデータセットにプロンプトエンコーダとマスクデコーダを併用する。
我々の訓練されたSAMedモデルは,最先端の手法に匹敵する医用画像のセマンティックセグメンテーションを実現する。
論文 参考訳(メタデータ) (2023-04-26T19:05:34Z) - Segment Anything Model for Medical Image Analysis: an Experimental Study [19.95972201734614]
Segment Anything Model (SAM) は、ユーザ定義オブジェクトをインタラクティブな方法でセグメント化する基礎モデルである。
SAMの医用画像の分類能力について,各種のモダリティと解剖から,19の医用画像データセットの集合体を用いて評価した。
論文 参考訳(メタデータ) (2023-04-20T17:50:18Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。