Partially Observable Mean Field Multi-Agent Reinforcement Learning Based
on Graph-Attention
- URL: http://arxiv.org/abs/2304.12653v2
- Date: Tue, 5 Mar 2024 06:25:06 GMT
- Title: Partially Observable Mean Field Multi-Agent Reinforcement Learning Based
on Graph-Attention
- Authors: Min Yang, Guanjun Liu, Ziyuan Zhou
- Abstract summary: We propose a novel multi-agent reinforcement learning algorithm, Partially Observable Mean Field Multi-Agent Reinforcement Learning based on Graph--Attention (GAMFQ)
GAMFQ uses a graph attention module and a mean field module to describe how an agent is influenced by the actions of other agents at each time step.
- Score: 14.148623895662558
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Traditional multi-agent reinforcement learning algorithms are difficultly
applied in a large-scale multi-agent environment. The introduction of mean
field theory has enhanced the scalability of multi-agent reinforcement learning
in recent years. This paper considers partially observable multi-agent
reinforcement learning (MARL), where each agent can only observe other agents
within a fixed range. This partial observability affects the agent's ability to
assess the quality of the actions of surrounding agents. This paper focuses on
developing a method to capture more effective information from local
observations in order to select more effective actions. Previous work in this
field employs probability distributions or weighted mean field to update the
average actions of neighborhood agents, but it does not fully consider the
feature information of surrounding neighbors and leads to a local optimum. In
this paper, we propose a novel multi-agent reinforcement learning algorithm,
Partially Observable Mean Field Multi-Agent Reinforcement Learning based on
Graph--Attention (GAMFQ) to remedy this flaw. GAMFQ uses a graph attention
module and a mean field module to describe how an agent is influenced by the
actions of other agents at each time step. This graph attention module consists
of a graph attention encoder and a differentiable attention mechanism, and this
mechanism outputs a dynamic graph to represent the effectiveness of
neighborhood agents against central agents. The mean--field module approximates
the effect of a neighborhood agent on a central agent as the average effect of
effective neighborhood agents. We evaluate GAMFQ on three challenging tasks in
the MAgents framework. Experiments show that GAMFQ outperforms baselines
including the state-of-the-art partially observable mean-field reinforcement
learning algorithms.
Related papers
- Self-Supervised Neuron Segmentation with Multi-Agent Reinforcement
Learning [53.00683059396803]
Mask image model (MIM) has been widely used due to its simplicity and effectiveness in recovering original information from masked images.
We propose a decision-based MIM that utilizes reinforcement learning (RL) to automatically search for optimal image masking ratio and masking strategy.
Our approach has a significant advantage over alternative self-supervised methods on the task of neuron segmentation.
arXiv Detail & Related papers (2023-10-06T10:40:46Z) - SACHA: Soft Actor-Critic with Heuristic-Based Attention for Partially
Observable Multi-Agent Path Finding [3.4260993997836753]
We propose a novel multi-agent actor-critic method called Soft Actor-Critic with Heuristic-Based Attention (SACHA)
SACHA learns a neural network for each agent to selectively pay attention to the shortest path guidance from multiple agents within its field of view.
We demonstrate decent improvements over several state-of-the-art learning-based MAPF methods with respect to success rate and solution quality.
arXiv Detail & Related papers (2023-07-05T23:36:33Z) - MA2CL:Masked Attentive Contrastive Learning for Multi-Agent
Reinforcement Learning [128.19212716007794]
We propose an effective framework called textbfMulti-textbfAgent textbfMasked textbfAttentive textbfContrastive textbfLearning (MA2CL)
MA2CL encourages learning representation to be both temporal and agent-level predictive by reconstructing the masked agent observation in latent space.
Our method significantly improves the performance and sample efficiency of different MARL algorithms and outperforms other methods in various vision-based and state-based scenarios.
arXiv Detail & Related papers (2023-06-03T05:32:19Z) - MADiff: Offline Multi-agent Learning with Diffusion Models [79.18130544233794]
Diffusion model (DM) recently achieved huge success in various scenarios including offline reinforcement learning.
We propose MADiff, a novel generative multi-agent learning framework to tackle this problem.
Our experiments show the superior performance of MADiff compared to baseline algorithms in a wide range of multi-agent learning tasks.
arXiv Detail & Related papers (2023-05-27T02:14:09Z) - Beyond Rewards: a Hierarchical Perspective on Offline Multiagent
Behavioral Analysis [14.656957226255628]
We introduce a model-agnostic method for discovery of behavior clusters in multiagent domains.
Our framework makes no assumption about agents' underlying learning algorithms, does not require access to their latent states or models, and can be trained using entirely offline observational data.
arXiv Detail & Related papers (2022-06-17T23:07:33Z) - PooL: Pheromone-inspired Communication Framework forLarge Scale
Multi-Agent Reinforcement Learning [0.0]
textbfPooL is an indirect communication framework applied to large scale multi-agent reinforcement textbfl.
PooL uses the release and utilization mechanism of pheromones to control large-scale agent coordination.
PooL can capture effective information and achieve higher rewards than other state-of-arts methods with lower communication costs.
arXiv Detail & Related papers (2022-02-20T03:09:53Z) - Soft Hierarchical Graph Recurrent Networks for Many-Agent Partially
Observable Environments [9.067091068256747]
We propose a novel network structure called hierarchical graph recurrent network(HGRN) for multi-agent cooperation under partial observability.
Based on the above technologies, we proposed a value-based MADRL algorithm called Soft-HGRN and its actor-critic variant named SAC-HRGN.
arXiv Detail & Related papers (2021-09-05T09:51:25Z) - What is Going on Inside Recurrent Meta Reinforcement Learning Agents? [63.58053355357644]
Recurrent meta reinforcement learning (meta-RL) agents are agents that employ a recurrent neural network (RNN) for the purpose of "learning a learning algorithm"
We shed light on the internal working mechanisms of these agents by reformulating the meta-RL problem using the Partially Observable Markov Decision Process (POMDP) framework.
arXiv Detail & Related papers (2021-04-29T20:34:39Z) - Graph Convolutional Value Decomposition in Multi-Agent Reinforcement
Learning [9.774412108791218]
We propose a novel framework for value function factorization in deep reinforcement learning.
In particular, we consider the team of agents as the set of nodes of a complete directed graph.
We introduce a mixing GNN module, which is responsible for i) factorizing the team state-action value function into individual per-agent observation-action value functions, and ii) explicit credit assignment to each agent in terms of fractions of the global team reward.
arXiv Detail & Related papers (2020-10-09T18:01:01Z) - Dif-MAML: Decentralized Multi-Agent Meta-Learning [54.39661018886268]
We propose a cooperative multi-agent meta-learning algorithm, referred to as MAML or Dif-MAML.
We show that the proposed strategy allows a collection of agents to attain agreement at a linear rate and to converge to a stationary point of the aggregate MAML.
Simulation results illustrate the theoretical findings and the superior performance relative to the traditional non-cooperative setting.
arXiv Detail & Related papers (2020-10-06T16:51:09Z) - FACMAC: Factored Multi-Agent Centralised Policy Gradients [103.30380537282517]
We propose FACtored Multi-Agent Centralised policy gradients (FACMAC)
It is a new method for cooperative multi-agent reinforcement learning in both discrete and continuous action spaces.
We evaluate FACMAC on variants of the multi-agent particle environments, a novel multi-agent MuJoCo benchmark, and a challenging set of StarCraft II micromanagement tasks.
arXiv Detail & Related papers (2020-03-14T21:29:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.