論文の概要: Unpaired Image Translation to Mitigate Domain Shift in Liquid Argon Time Projection Chamber Detector Responses
- arxiv url: http://arxiv.org/abs/2304.12858v4
- Date: Thu, 10 Oct 2024 15:48:42 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-10-15 21:41:41.753072
- Title: Unpaired Image Translation to Mitigate Domain Shift in Liquid Argon Time Projection Chamber Detector Responses
- Title(参考訳): 液体アルゴン時間射影チャンバ検出器応答における領域シフト軽減のための未ペア画像変換
- Authors: Yi Huang, Dmitrii Torbunov, Brett Viren, Haiwang Yu, Jin Huang, Meifeng Lin, Yihui Ren,
- Abstract要約: ドメインシフト問題」は、アルゴリズムがシミュレーションデータに基づいて訓練されるが、実際のデータセットに適用される多くの科学領域で一般的である。
この研究は、ダウンストリームアルゴリズムに特有でないドメインシフト問題を解決するために、代替手法を使用することの可能性を探る。
提案手法は、教師なしの方法で異なる画像領域間の翻訳を見つけるために設計された、最新の画像から画像への翻訳技術に依存している。
- 参考スコア(独自算出の注目度): 5.799883835053843
- License:
- Abstract: Deep learning algorithms often are trained and deployed on different datasets. Any systematic difference between the training and a test dataset may degrade the algorithm performance--what is known as the domain shift problem. This issue is prevalent in many scientific domains where algorithms are trained on simulated data but applied to real-world datasets. Typically, the domain shift problem is solved through various domain adaptation methods. However, these methods are often tailored for a specific downstream task and may not easily generalize to different tasks. This work explores the feasibility of using an alternative way to solve the domain shift problem that is not specific to any downstream algorithm. The proposed approach relies on modern Unpaired Image-to-Image translation techniques, designed to find translations between different image domains in a fully unsupervised fashion. In this study, the approach is applied to a domain shift problem commonly encountered in Liquid Argon Time Projection Chamber (LArTPC) detector research when seeking a way to translate samples between two differently distributed detector datasets deterministically. This translation allows for mapping real-world data into the simulated data domain where the downstream algorithms can be run with much less domain-shift-related degradation. Conversely, using the translation from the simulated data in a real-world domain can increase the realism of the simulated dataset and reduce the magnitude of any systematic uncertainties. We adapted several UI2I translation algorithms to work on scientific data and demonstrated the viability of these techniques for solving the domain shift problem with LArTPC detector data. To facilitate further development of domain adaptation techniques for scientific datasets, the "Simple Liquid-Argon Track Samples" dataset used in this study also is published.
- Abstract(参考訳): ディープラーニングアルゴリズムはトレーニングされ、異なるデータセットにデプロイされることが多い。
トレーニングとテストデータセットの体系的な違いはすべて、ドメインシフト問題として知られるアルゴリズムのパフォーマンスを低下させる可能性がある。
この問題は、アルゴリズムがシミュレーションデータに基づいて訓練されるが、現実のデータセットに適用される多くの科学領域で一般的である。
通常、ドメインシフト問題は様々なドメイン適応手法によって解決される。
しかし、これらの手法は特定の下流タスクに適合し、容易に異なるタスクに一般化できないことがある。
この研究は、ダウンストリームアルゴリズムに特有でないドメインシフト問題を解決するために、代替手法を使用することの可能性を探る。
提案手法は、教師なしの方法で異なる画像領域間の翻訳を見つけるために設計された、最新のUnpaired Image-to-Image翻訳技術に依存している。
本研究では,Liquid Argon Time Projection Chamber (LArTPC) でよく見られる領域シフト問題に対して,2つの異なる分散検出器データセット間のサンプルを決定論的に翻訳する方法を提案する。
この変換により、現実世界のデータをシミュレートされたデータドメインにマッピングすることができる。
逆に、実世界の領域におけるシミュレーションデータからの翻訳を使用することで、シミュレーションデータセットの現実性を高め、不確実性の程度を小さくすることができる。
LArTPC検出器データを用いた領域シフト問題の解法として,いくつかのUI2I翻訳アルゴリズムを科学的データに応用し,これらの手法の有効性を実証した。
科学的データセットのドメイン適応手法のさらなる発展を促進するために,本研究で用いた"Simple Liquid-Argon Track Samples"データセットも公開している。
関連論文リスト
- Multi-Source and Test-Time Domain Adaptation on Multivariate Signals using Spatio-Temporal Monge Alignment [59.75420353684495]
コンピュータビジョンやバイオメディカルデータなどの信号に対する機械学習の応用は、ハードウェアデバイスやセッション記録にまたがる変動のため、しばしば課題に直面している。
本研究では,これらの変動を緩和するために,時空間モンジュアライメント(STMA)を提案する。
我々はSTMAが、非常に異なる設定で取得したデータセット間で、顕著で一貫したパフォーマンス向上をもたらすことを示す。
論文 参考訳(メタデータ) (2024-07-19T13:33:38Z) - T-UDA: Temporal Unsupervised Domain Adaptation in Sequential Point
Clouds [2.5291108878852864]
教師なしドメイン適応(UDA)メソッドは、1つの(ソース)ドメインでトレーニングされたモデルに、アノテーションが利用可能な他の(ターゲット)ドメインに適応する。
本稿では,両トレンドの長所を活かした新しい領域適応手法を提案する。この組み合わせにより,運転シーンの3次元セマンティックセマンティックセグメンテーションのタスクにおいて,大きなパフォーマンス向上が得られる。
論文 参考訳(メタデータ) (2023-09-15T10:47:12Z) - SALUDA: Surface-based Automotive Lidar Unsupervised Domain Adaptation [62.889835139583965]
我々は、ソースデータとターゲットデータに基づいて、暗黙の基盤となる表面表現を同時に学習する教師なし補助タスクを導入する。
両方のドメインが同じ遅延表現を共有しているため、モデルは2つのデータソース間の不一致を許容せざるを得ない。
実験の結果,本手法は実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-実-
論文 参考訳(メタデータ) (2023-04-06T17:36:23Z) - One-Shot Domain Adaptive and Generalizable Semantic Segmentation with
Class-Aware Cross-Domain Transformers [96.51828911883456]
セマンティックセグメンテーションのための教師なしのsim-to-realドメイン適応(UDA)は、シミュレーションデータに基づいて訓練されたモデルの実世界のテスト性能を改善することを目的としている。
従来のUDAは、適応のためのトレーニング中に利用可能なラベルのない実世界のサンプルが豊富にあると仮定することが多い。
実世界のデータサンプルが1つしか利用できない,一発の教師なしシム・トゥ・リアル・ドメイン適応(OSUDA)と一般化問題について検討する。
論文 参考訳(メタデータ) (2022-12-14T15:54:15Z) - Domain Adaptation for Time-Series Classification to Mitigate Covariate
Shift [3.071136270246468]
本稿では,2つのステップに基づいた新しいドメイン適応手法を提案する。
まず、いくつかのサンプルから、ソースからターゲットドメインへの最適なクラス依存変換を探索する。
次に、埋め込み類似性技術を用いて、推論時に対応する変換を選択する。
論文 参考訳(メタデータ) (2022-04-07T10:27:14Z) - Towards Unsupervised Domain Adaptation via Domain-Transformer [0.0]
教師なしドメイン適応(UDA)のためのドメイン変換器(DoT)を提案する。
DoTは新しい視点から、CNNバックボーンとTransformerのコアアテンションメカニズムを統合する。
ドメイン間の局所的な意味的一貫性を実現し、そこではドメインレベルの注意と多様体の正規化が探索される。
論文 参考訳(メタデータ) (2022-02-24T02:30:15Z) - Achieving Domain Generalization in Underwater Object Detection by Image
Stylization and Domain Mixup [8.983901488753967]
既存の水中物体検出手法は複雑な水中環境に起因する領域シフト問題に直面すると深刻に劣化する。
本稿では,データ拡張の観点からのドメイン一般化手法を提案する。
S-UODAC 2020データセットに関する総合的な実験は、提案手法がドメイン不変表現を学習できることを実証している。
論文 参考訳(メタデータ) (2021-04-06T01:45:07Z) - Flexible deep transfer learning by separate feature embeddings and
manifold alignment [0.0]
オブジェクト認識は、業界と防衛において重要な存在である。
残念ながら、既存のラベル付きデータセットでトレーニングされたアルゴリズムは、データ分布が一致しないため、直接新しいデータに一般化しない。
本稿では,各領域の特徴抽出を個別に学習することで,この制限を克服する新しいディープラーニングフレームワークを提案する。
論文 参考訳(メタデータ) (2020-12-22T19:24:44Z) - A Review of Single-Source Deep Unsupervised Visual Domain Adaptation [81.07994783143533]
大規模ラベル付きトレーニングデータセットにより、ディープニューラルネットワークは、幅広いベンチマークビジョンタスクを拡張できるようになった。
多くのアプリケーションにおいて、大量のラベル付きデータを取得するのは非常に高価で時間を要する。
限られたラベル付きトレーニングデータに対処するため、大規模ラベル付きソースドメインでトレーニングされたモデルを、疎ラベルまたは未ラベルのターゲットドメインに直接適用しようと試みている人も多い。
論文 参考訳(メタデータ) (2020-09-01T00:06:50Z) - Learning Domain-invariant Graph for Adaptive Semi-supervised Domain
Adaptation with Few Labeled Source Samples [65.55521019202557]
ドメイン適応は、ソースドメインからモデルを一般化して、関連するが異なるターゲットドメインのタスクに取り組むことを目的としています。
従来のドメイン適応アルゴリズムは、事前知識として扱われる十分なラベル付きデータがソースドメインで利用できると仮定する。
少数のラベル付きソースサンプルを用いたドメイン適応のためのドメイン不変グラフ学習(DGL)手法を提案する。
論文 参考訳(メタデータ) (2020-08-21T08:13:25Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
教師なし領域適応は様々なコンピュータビジョンタスクにおいて重要である。
教師なし領域適応のための新しい空間注意ピラミッドネットワークを設計する。
我々の手法は最先端の手法に対して大きなマージンで好適に機能する。
論文 参考訳(メタデータ) (2020-03-29T09:03:23Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。