論文の概要: Awesome-META+: Meta-Learning Research and Learning Platform
- arxiv url: http://arxiv.org/abs/2304.12921v1
- Date: Mon, 24 Apr 2023 03:09:25 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-26 19:55:08.312500
- Title: Awesome-META+: Meta-Learning Research and Learning Platform
- Title(参考訳): Awesome-META+:メタ学習研究・学習プラットフォーム
- Authors: Jingyao Wang, Chuyuan Zhang, Ye Ding, Yuxuan Yang
- Abstract要約: Awesome-META+は、完全で信頼性の高いメタラーニングフレームワークアプリケーションと学習プラットフォームである。
このプロジェクトはメタラーニングの発展とコミュニティの拡大を促進することを目的としている。
- 参考スコア(独自算出の注目度): 3.7381507346856524
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Artificial intelligence technology has already had a profound impact in
various fields such as economy, industry, and education, but still limited.
Meta-learning, also known as "learning to learn", provides an opportunity for
general artificial intelligence, which can break through the current AI
bottleneck. However, meta learning started late and there are fewer projects
compare with CV, NLP etc. Each deployment requires a lot of experience to
configure the environment, debug code or even rewrite, and the frameworks are
isolated. Moreover, there are currently few platforms that focus exclusively on
meta-learning, or provide learning materials for novices, for which the
threshold is relatively high. Based on this, Awesome-META+, a meta-learning
framework integration and learning platform is proposed to solve the above
problems and provide a complete and reliable meta-learning framework
application and learning platform. The project aims to promote the development
of meta-learning and the expansion of the community, including but not limited
to the following functions: 1) Complete and reliable meta-learning framework,
which can adapt to multi-field tasks such as target detection, image
classification, and reinforcement learning. 2) Convenient and simple model
deployment scheme which provide convenient meta-learning transfer methods and
usage methods to lower the threshold of meta-learning and improve efficiency.
3) Comprehensive researches for learning. 4) Objective and credible performance
analysis and thinking.
- Abstract(参考訳): 人工知能技術はすでに経済、産業、教育といった様々な分野で大きな影響を与えているが、まだ限られている。
メタ学習(メタラーニング)は、一般的な人工知能の機会を提供するもので、現在のAIボトルネックを突破することができる。
しかしメタ学習は遅くから始まり、CVやNLPなどと比較するプロジェクトは少ない。
各デプロイメントには、環境の設定やコードのデバッグ、書き直しなど、多くの経験が必要で、フレームワークは分離されています。
さらに、現在、メタラーニングのみに焦点を当てたプラットフォームや、閾値が比較的高い初心者向けの学習教材を提供するプラットフォームは少ない。
上記の問題を解決し、完全かつ信頼性の高いメタラーニングフレームワークアプリケーションおよび学習プラットフォームを提供するために、メタラーニングフレームワーク統合および学習プラットフォームであるawesome-meta+が提案されている。
このプロジェクトは、メタラーニングの発展とコミュニティの拡大を促進することを目的としており、以下の機能に限らない。
1) 目標検出,画像分類,強化学習などの多分野タスクに適応できる完全かつ信頼性の高いメタ学習フレームワーク。
2)メタラーニングの閾値を低くし、効率を向上させるための、便利なメタラーニング転送方法と利用方法を提供する、便利で簡単なモデル展開方式。
3)学習のための総合的な研究。
4)客観的かつ信頼性の高い性能分析と思考。
関連論文リスト
- ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning [49.447777286862994]
ConMLは、さまざまなメタ学習アルゴリズムに適用可能な、普遍的なメタ学習フレームワークである。
我々は、ConMLが最適化ベース、メートル法ベース、およびアモータイズベースメタ学習アルゴリズムとシームレスに統合できることを実証した。
論文 参考訳(メタデータ) (2024-10-08T12:22:10Z) - Advances and Challenges in Meta-Learning: A Technical Review [7.149235250835041]
メタ学習は、複数のタスクから知識を得る能力を持つ学習システムに力を与える。
このレビューは、データの不足や入手コストの低い実世界のアプリケーションにおいて、その重要性を強調している。
論文 参考訳(メタデータ) (2023-07-10T17:32:15Z) - Concept Discovery for Fast Adapatation [42.81705659613234]
データ特徴間の構造をメタラーニングすることで、より効果的な適応を実現する。
提案手法は,概念ベースモデル非依存メタラーニング(COMAML)を用いて,合成されたデータセットと実世界のデータセットの両方に対して,構造化データの一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-19T02:33:58Z) - Learning with Limited Samples -- Meta-Learning and Applications to
Communication Systems [46.760568562468606]
メタ学習は、新しいタスクに迅速に適応できる学習アルゴリズムを最適化する。
このレビュー・モノグラフは、原則、アルゴリズム、理論、工学的応用をカバーし、メタラーニングの紹介を提供する。
論文 参考訳(メタデータ) (2022-10-03T17:15:36Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
本稿では,新しいタスクを微調整したマルチタスク事前学習がメタテスト時間適応によるメタ事前学習と同等かそれ以上に機能することを示す。
マルチタスク事前学習はメタRLよりもシンプルで計算的に安価である傾向があるため、これは将来の研究を奨励している。
論文 参考訳(メタデータ) (2022-06-07T13:24:00Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
メタラーニングはラーニング・トゥ・ラーン(Learning-to-Lern)とも呼ばれる。
メタラーニング手法は,ブラックボックスメタラーニング,メトリックベースメタラーニング,階層型メタラーニング,ベイズ的メタラーニングフレームワークである。
論文 参考訳(メタデータ) (2020-04-17T03:11:08Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。