論文の概要: AwesomeMeta+: Bridging the Technical Barriers to Meta-Learning via A Prototyping and Learning System
- arxiv url: http://arxiv.org/abs/2304.12921v2
- Date: Wed, 18 Dec 2024 02:08:15 GMT
- ステータス: 翻訳完了
- システム内更新日: 2024-12-19 16:47:24.818928
- Title: AwesomeMeta+: Bridging the Technical Barriers to Meta-Learning via A Prototyping and Learning System
- Title(参考訳): AwesomeMeta+: プロトタイピングと学習システムによるメタラーニングへの技術的障壁のブリッジ
- Authors: Jingyao Wang, Yuxuan Yang, Wenwen Qiang, Changwen Zheng,
- Abstract要約: AwesomeMeta+は、メタ学習のさまざまなコンポーネントを標準化するプロトタイピングと学習システムである。
実際にアプリケーションのニーズを満たすために、互換性のあるアルゴリズムモジュールを組み立てることができる。
- 参考スコア(独自算出の注目度): 13.495894231743497
- License:
- Abstract: Meta-learning, also known as "learning to learn", enables models to acquire great generalization abilities by learning from various tasks. Recent advancements have made these models applicable across various fields without data constraints, offering new opportunities for general artificial intelligence. However, applying these models can be challenging due to their often task-specific, standalone nature and the technical barriers involved. To address this challenge, we develop AwesomeMeta+, a prototyping and learning system that standardizes different components of meta-learning and uses a building block metaphor to assist in model construction. AwesomeMeta+ allows users to assemble compatible algorithm modules to meet the application needs in practice. To optimize AwesomeMeta+, we provide the interface to 50 researchers and refine the design based on their feedback. Through machine-based testing and user studies, we demonstrate that AwesomeMeta+ enhances users' understanding of the related technologies and accelerates their engineering processes by offering guidance for meta-learning deployments.
- Abstract(参考訳): メタラーニング(メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング、メタラーニング)は、モデルが様々なタスク
近年の進歩により、これらのモデルはデータ制約なしに様々な分野に適用可能となり、汎用人工知能の新しい機会がもたらされた。
しかしながら、これらのモデルを適用することは、しばしばタスク固有の独立した性質と関連する技術的な障壁のため、難しい場合がある。
この課題に対処するために,メタラーニングの異なるコンポーネントを標準化するプロトタイピングと学習システムであるAwesomeMeta+を開発し,モデル構築を支援するためにビルディングブロックメタファーを使用する。
AwesomeMeta+は、ユーザーが実際にアプリケーションのニーズを満たすために互換性のあるアルゴリズムモジュールを組み立てることを可能にする。
AwesomeMeta+を最適化するために、50人の研究者にインターフェースを提供し、フィードバックに基づいて設計を洗練します。
マシンベースのテストとユーザスタディを通じて,AwesomeMeta+がユーザによる関連技術に対する理解を高め,メタラーニングデプロイメントのガイダンスを提供することで,エンジニアリングプロセスの促進を図っている。
関連論文リスト
- ConML: A Universal Meta-Learning Framework with Task-Level Contrastive Learning [49.447777286862994]
ConMLは、さまざまなメタ学習アルゴリズムに適用可能な、普遍的なメタ学習フレームワークである。
我々は、ConMLが最適化ベース、メートル法ベース、およびアモータイズベースメタ学習アルゴリズムとシームレスに統合できることを実証した。
論文 参考訳(メタデータ) (2024-10-08T12:22:10Z) - Advances and Challenges in Meta-Learning: A Technical Review [7.149235250835041]
メタ学習は、複数のタスクから知識を得る能力を持つ学習システムに力を与える。
このレビューは、データの不足や入手コストの低い実世界のアプリケーションにおいて、その重要性を強調している。
論文 参考訳(メタデータ) (2023-07-10T17:32:15Z) - Concept Discovery for Fast Adapatation [42.81705659613234]
データ特徴間の構造をメタラーニングすることで、より効果的な適応を実現する。
提案手法は,概念ベースモデル非依存メタラーニング(COMAML)を用いて,合成されたデータセットと実世界のデータセットの両方に対して,構造化データの一貫した改善を実現する。
論文 参考訳(メタデータ) (2023-01-19T02:33:58Z) - Learning with Limited Samples -- Meta-Learning and Applications to
Communication Systems [46.760568562468606]
メタ学習は、新しいタスクに迅速に適応できる学習アルゴリズムを最適化する。
このレビュー・モノグラフは、原則、アルゴリズム、理論、工学的応用をカバーし、メタラーニングの紹介を提供する。
論文 参考訳(メタデータ) (2022-10-03T17:15:36Z) - On the Effectiveness of Fine-tuning Versus Meta-reinforcement Learning [71.55412580325743]
本稿では,新しいタスクを微調整したマルチタスク事前学習がメタテスト時間適応によるメタ事前学習と同等かそれ以上に機能することを示す。
マルチタスク事前学習はメタRLよりもシンプルで計算的に安価である傾向があるため、これは将来の研究を奨励している。
論文 参考訳(メタデータ) (2022-06-07T13:24:00Z) - Online Structured Meta-learning [137.48138166279313]
現在のオンラインメタ学習アルゴリズムは、グローバルに共有されたメタラーナーを学ぶために限られている。
この制限を克服するオンライン構造化メタラーニング(OSML)フレームワークを提案する。
3つのデータセットの実験は、提案フレームワークの有効性と解釈可能性を示している。
論文 参考訳(メタデータ) (2020-10-22T09:10:31Z) - A Comprehensive Overview and Survey of Recent Advances in Meta-Learning [0.0]
メタラーニングはラーニング・トゥ・ラーン(Learning-to-Lern)とも呼ばれる。
メタラーニング手法は,ブラックボックスメタラーニング,メトリックベースメタラーニング,階層型メタラーニング,ベイズ的メタラーニングフレームワークである。
論文 参考訳(メタデータ) (2020-04-17T03:11:08Z) - Meta-Baseline: Exploring Simple Meta-Learning for Few-Shot Learning [79.25478727351604]
評価基準に基づいて,分類済みモデル全体に対するメタラーニング(メタラーニング)を提案する。
我々は,この単純な手法が標準ベンチマークにおける最先端手法との競合性能を達成するのを観察する。
論文 参考訳(メタデータ) (2020-03-09T20:06:36Z) - Revisiting Meta-Learning as Supervised Learning [69.2067288158133]
メタラーニングと従来の教師付き学習の関連性を再考し,強化することで,原則的,統一的なフレームワークの提供を目指す。
タスク固有のデータセットとターゲットモデルを(機能、ラベル)サンプルとして扱うことで、多くのメタ学習アルゴリズムを教師付き学習のインスタンスに還元することができる。
この視点は、メタラーニングを直感的で実践的なフレームワークに統一するだけでなく、教師付き学習から直接洞察を伝達してメタラーニングを改善することができる。
論文 参考訳(メタデータ) (2020-02-03T06:13:01Z) - Automated Relational Meta-learning [95.02216511235191]
本稿では,クロスタスク関係を自動的に抽出し,メタ知識グラフを構築する自動リレーショナルメタ学習フレームワークを提案する。
我々は,2次元玩具の回帰と少数ショット画像分類に関する広範な実験を行い,ARMLが最先端のベースラインよりも優れていることを示す。
論文 参考訳(メタデータ) (2020-01-03T07:02:25Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。