論文の概要: Exact recovery for the non-uniform Hypergraph Stochastic Block Model
- arxiv url: http://arxiv.org/abs/2304.13139v1
- Date: Tue, 25 Apr 2023 20:30:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-27 16:35:18.404938
- Title: Exact recovery for the non-uniform Hypergraph Stochastic Block Model
- Title(参考訳): 非一様超グラフ確率ブロックモデルの厳密な回復
- Authors: Ioana Dumitriu, Haixiao Wang
- Abstract要約: 非一様ハイパーグラフブロックモデルに基づくランダムなハイパーグラフにおけるコミュニティ検出問題について考察する。
すべての均一層からの情報を集約することにより、各層が単独で考慮されていれば、それが不可能に見える場合であっても、正確な回復が得られる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Consider the community detection problem in random hypergraphs under the
non-uniform hypergraph stochastic block model (HSBM), where each hyperedge
appears independently with some given probability depending only on the labels
of its vertices. We establish, for the first time in the literature, a sharp
threshold for exact recovery under this non-uniform case, subject to minor
constraints; in particular, we consider the model with $K$ classes as well as
the symmetric binary model ($K=2$). One crucial point here is that by
aggregating information from all the uniform layers, we may obtain exact
recovery even in cases when this may appear impossible if each layer were
considered alone. Two efficient algorithms that successfully achieve exact
recovery above the threshold are provided. The theoretical analysis of our
algorithms relies on the concentration and regularization of the adjacency
matrix for non-uniform random hypergraphs, which could be of independent
interest. We also address some open problems regarding parameter knowledge and
estimation.
- Abstract(参考訳): 非一様ハイパーグラフ確率ブロックモデル(hsbm)の下でのランダムハイパーグラフにおけるコミュニティ検出問題を考える。
特に、K$クラスを持つモデルと対称二項モデル(K=2$)を考える。
ここでの重要なポイントは、すべての均一な層から情報を集約することで、各層が単独では不可能に見える場合であっても、正確な回復が得られることである。
しきい値以上の正確な回復を達成する2つの効率的なアルゴリズムが提供される。
我々のアルゴリズムの理論的解析は、非一様ランダムハイパーグラフに対する隣接行列の濃度と正規化に依存しており、これは独立な関心を持つ可能性がある。
またパラメータ知識と推定に関するオープンな問題にも対処する。
関連論文リスト
- Error Feedback under $(L_0,L_1)$-Smoothness: Normalization and Momentum [56.37522020675243]
機械学習の幅広い問題にまたがる正規化誤差フィードバックアルゴリズムに対する収束の最初の証明を提供する。
提案手法では,許容可能なステップサイズが大きくなったため,新しい正規化エラーフィードバックアルゴリズムは,各種タスクにおける非正規化エラーよりも優れていた。
論文 参考訳(メタデータ) (2024-10-22T10:19:27Z) - Best Arm Identification with Fixed Budget: A Large Deviation Perspective [54.305323903582845]
我々は、様々な武器の報酬間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
特に、様々な武器の報酬の間の経験的ギャップに基づいて、あらゆるラウンドで腕を拒絶できる真に適応的なアルゴリズムであるsredを提示する。
論文 参考訳(メタデータ) (2023-12-19T13:17:43Z) - Curvature-Independent Last-Iterate Convergence for Games on Riemannian
Manifolds [77.4346324549323]
本研究では, 多様体の曲率に依存しないステップサイズが, 曲率非依存かつ直線的最終点収束率を達成することを示す。
我々の知る限りでは、曲率非依存率や/または最終点収束の可能性はこれまでに検討されていない。
論文 参考訳(メタデータ) (2023-06-29T01:20:44Z) - Strong consistency and optimality of spectral clustering in symmetric
binary non-uniform Hypergraph Stochastic Block Model [0.0]
非一様EmphHypergraph Block Model(HSBM)に基づくランダムハイパーグラフの教師なし分類問題について検討する。
すべての均一層から情報を集約することで,各層を単独で考えるのが不可能であっても,強い一貫性が達成できることがわかった。
論文 参考訳(メタデータ) (2023-06-12T03:38:25Z) - Semi-Supervised Clustering of Sparse Graphs: Crossing the
Information-Theoretic Threshold [3.6052935394000234]
ブロックモデルは、ネットワーク構造データのクラスタリングとコミュニティ検出のための標準ランダムグラフモデルである。
ネットワークトポロジに基づく推定器は、モデルパラメータが一定の閾値以下である場合、スパースグラフの確率よりも大幅に向上する。
パラメータ領域全体でラベルの任意の部分で実現可能であることを示す。
論文 参考訳(メタデータ) (2022-05-24T00:03:25Z) - Nonconvex Stochastic Scaled-Gradient Descent and Generalized Eigenvector
Problems [98.34292831923335]
オンライン相関解析の問題から,emphStochastic Scaled-Gradient Descent (SSD)アルゴリズムを提案する。
我々はこれらのアイデアをオンライン相関解析に適用し、局所収束率を正規性に比例した最適な1時間スケールのアルゴリズムを初めて導いた。
論文 参考訳(メタデータ) (2021-12-29T18:46:52Z) - Partial recovery and weak consistency in the non-uniform hypergraph Stochastic Block Model [6.681901523019242]
非一様ハイパーグラフブロックモデル(HSBM)に基づくランダムハイパーグラフにおけるコミュニティ検出問題の検討
我々は,少なくとも$gamma$分の頂点を正しく分類した分割を出力するスペクトルアルゴリズムを提案し,$gammainはモデルの信号-雑音比(SNR)に依存する。
このアルゴリズムの理論的解析は、非一様ランダムハイパーグラフに対する隣接行列の濃度と正規化に依存しており、これは独立な関心を持つことができる。
論文 参考訳(メタデータ) (2021-12-22T05:38:33Z) - Exact Recovery in the General Hypergraph Stochastic Block Model [92.28929858529679]
本稿では,d-uniform hypergraph block model(d-HSBM)の正確な回復の基本的な限界について検討する。
精度の高いしきい値が存在し、正確な回復がしきい値の上に達成でき、その下には不可能であることを示す。
論文 参考訳(メタデータ) (2021-05-11T03:39:08Z) - Spectral clustering under degree heterogeneity: a case for the random
walk Laplacian [83.79286663107845]
本稿では,ランダムウォークラプラシアンを用いたグラフスペクトル埋め込みが,ノード次数に対して完全に補正されたベクトル表現を生成することを示す。
次数補正ブロックモデルの特別な場合、埋め込みはK個の異なる点に集中し、コミュニティを表す。
論文 参考訳(メタデータ) (2021-05-03T16:36:27Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。